【題目】圖1是某縣參加2007年高考的學(xué)生身高條形統(tǒng)計(jì)圖,從左到右的各條形圖表示學(xué)生人數(shù)依次記為A1、A2、…A10(如A2表示身高(單位:cm)在[150,155
內(nèi)的人數(shù)].圖2是統(tǒng)計(jì)圖1中身高在一定范圍內(nèi)學(xué)生人數(shù)的一個算法流程圖.現(xiàn)要統(tǒng)計(jì)身高在160~180cm(含160cm,不含180cm)的學(xué)生人數(shù),那么在流程圖中的判斷框內(nèi)應(yīng)填寫的條件是
![]()
![]()
A.i<6B.i<7C.i<8D.i<9
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
的最小正周期為
,其圖象關(guān)于直線
對稱.給出下面四個結(jié)論:①將
的圖象向右平移
個單位長度后得到函數(shù)圖象關(guān)于原點(diǎn)對稱;②點(diǎn)
為
圖象的一個對稱中心;③
;④
在區(qū)間
上單調(diào)遞增.其中正確的結(jié)論為( )
A.①②B.②③C.②④D.①④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)若函數(shù)
有兩個極值點(diǎn),試求實(shí)數(shù)
的取值范圍;
(2)若
且
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2013年華人數(shù)學(xué)家張益唐證明了孿生素數(shù)猜想的一個弱化形式,此事引起了國際數(shù)學(xué)界的轟動許多專家認(rèn)為這是數(shù)論研究中的一項(xiàng)重大突破世界主流媒體都對這項(xiàng)重要成果作了報道并給予了高度評價,印度媒體甚至稱贊張益唐為“中國的拉馬努金”.孿生素數(shù)猜想是希爾伯特在1900年提出的23個問題之一,可以這樣描述:存在無窮多個素數(shù)
,使得
是素數(shù),素數(shù)對
稱為孿生素數(shù).在不超過20的素數(shù)中,隨機(jī)選取兩個不同的數(shù),其中能夠組成孿生素數(shù)的概率是( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐
中,四邊形
是邊長為2的菱形,
為正三角形,
與平面
所成的角為
,平面
平面
.
(1)求證:
;
(2)求平面
與平面
所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】微博橙子輔導(dǎo)用簡單隨機(jī)抽樣方法抽取了100名同學(xué),對其社會實(shí)踐次數(shù)進(jìn)行調(diào)查,結(jié)果如下:
![]()
若將社會實(shí)踐次數(shù)不低于12次的學(xué)生稱為“社會實(shí)踐標(biāo)兵”.
(1)將頻率視為概率,估計(jì)該校1600名學(xué)生中“社會實(shí)踐標(biāo)兵”有多少人?
(2)從已抽取的8名“社會實(shí)踐標(biāo)兵”中隨機(jī)抽取4位同學(xué)參加社會實(shí)踐表彰活動.
(。┰O(shè)A為事件"抽取的4位同學(xué)中既有男同學(xué)又有女同學(xué)”,求事件A發(fā)生的概率;
(ⅱ)用X表示抽取的“社會實(shí)踐標(biāo)兵”中男生的人數(shù),求隨機(jī)變量X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的長軸長是焦距的2倍,且過點(diǎn)
.
(1)求橢圓C的方程;
(2)設(shè)
為橢圓C上的動點(diǎn),F為橢圓C的右焦點(diǎn),A、B分別為橢圓C的左、右頂點(diǎn),點(diǎn)
滿足
.
①證明:
為定值;
②設(shè)Q是直線
上的動點(diǎn),直線AQ、BQ分別另交橢圓C于M、N兩點(diǎn),求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標(biāo)系內(nèi),曲線
的參數(shù)方程為
(
為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,直線
的極坐標(biāo)方程為
.
(1)把曲線
和直線
化為直角坐標(biāo)方程;
(2)過原點(diǎn)
引一條射線分別交曲線
和直線
于
,
兩點(diǎn),射線上另有一點(diǎn)
滿足
,求點(diǎn)
的軌跡方程(寫成直角坐標(biāo)形式的普通方程).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)若
在
處的切線方程為
,求實(shí)數(shù)
的值;
(2)證明:當(dāng)
時,
在
上有兩個極值點(diǎn);
(3)設(shè)
,若
在
上是單調(diào)減函數(shù)(
為自然對數(shù)的底數(shù)),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com