分析 設(shè)P為雙曲線和橢圓在第一象限內(nèi)的交點,|PF1|=m,|PF2|=n,運用橢圓和雙曲線的定義,可得m-n=4,m+n=6,求得m=5,n=1,運用余弦定理和面積公式,計算即可得到所求值.
解答 解:設(shè)P為雙曲線和橢圓在第一象限內(nèi)的交點,
|PF1|=m,|PF2|=n,
由雙曲線的定義可得,m-n=2×2=4,
由橢圓的定義可得m+n=2×3=6,
解得m=5,n=1,
又|F1F2|=5,由余弦定理可得,
cos∠F1PF2=$\frac{{5}^{2}+{1}^{2}-{5}^{2}}{2×5×1}$=$\frac{1}{10}$,
即有sin∠F1PF2=$\sqrt{1-\frac{1}{100}}$=$\frac{3\sqrt{11}}{10}$,
則△PF1F2的面積為$\frac{1}{2}$mnsin∠F1PF2=$\frac{1}{2}$×5×1×$\frac{3\sqrt{11}}{10}$
=$\frac{3\sqrt{11}}{4}$.
故答案為:$\frac{3\sqrt{11}}{4}$.
點評 本題考查橢圓和雙曲線的定義、方程和性質(zhì),考查余弦定理和三角形的面積公式的運用,考查運算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | y=±$\frac{\sqrt{3}}{3}$x | B. | y=±$\sqrt{3}$x | C. | y=±$\frac{\sqrt{3}}{2}$x | D. | y=±$\frac{2\sqrt{3}}{3}$x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{1}{2}$ | B. | ±$\frac{\sqrt{3}}{2}$ | C. | $-\frac{{\sqrt{3}}}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com