【題目】已知向量
,記函數(shù)
.求:
(I)函數(shù)
的最小值及取得最小值時(shí)
的集合;
(II)求函數(shù)f(x) 的單調(diào)增區(qū)間。
【答案】解:由題意:
,
所以, ![]()
因此,
![]()
當(dāng)
,即
時(shí),
取得最小值.
此時(shí)
,
最小值= ![]()
(II)函數(shù)
的單調(diào)遞增區(qū)間.
解:由題意: ![]()
即 ![]()
于是,
的單調(diào)遞增區(qū)間是 ![]()
【解析】(1)故解集平面向量的坐標(biāo)運(yùn)算整理原式,再結(jié)合二倍角的余弦公式
以及輔助角公式得到正弦型函數(shù),利用正弦型函數(shù)的最值情況得出當(dāng)f(x) 取得最小值和最大值時(shí)x的集合。(2)根據(jù)(1)的化簡(jiǎn)結(jié)果利用正弦型函數(shù)的單調(diào)性整體思想代入求出x的取值范圍,再將其變成區(qū)間的形式。
【考點(diǎn)精析】關(guān)于本題考查的二倍角的余弦公式和正弦函數(shù)的單調(diào)性,需要了解二倍角的余弦公式:
;正弦函數(shù)的單調(diào)性:在![]()
上是增函數(shù);在![]()
上是減函數(shù)才能得出正確答案.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】新課標(biāo)要求學(xué)生數(shù)學(xué)模塊學(xué)分認(rèn)定由模塊成績(jī)決定,模塊成績(jī)由模塊考試成績(jī)和平時(shí)成績(jī)構(gòu)成,各占50%,若模塊成績(jī)大于或等于60分,獲得2學(xué)分,否則不能獲得學(xué)分(為0分),設(shè)計(jì)一算法,通過(guò)考試成績(jī)和平時(shí)成績(jī)計(jì)算學(xué)分,并畫出程序框圖.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=
,數(shù)列{an}的前n項(xiàng)和為Sn , 且an=f(
),則S2017=( )
A.1008
B.1010
C.![]()
D.2019
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解學(xué)生身高情況,某校以
的比例對(duì)全校1000名學(xué)生按性別進(jìn)行分層抽樣調(diào)查,已知男女比例為
,測(cè)得男生身高情況的頻率分布直方圖(如圖所示):![]()
(1)計(jì)算所抽取的男生人數(shù),并估計(jì)男生身高的中位數(shù)(保留兩位小數(shù));
(2)從樣本中身高在
之間的男生中任選2人,求至少有1人身高在
之間的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明準(zhǔn)備利用暑假時(shí)間去旅游,媽媽為小明提供四個(gè)景點(diǎn),九寨溝、泰山、長(zhǎng)白山、武夷山.小明決定用所學(xué)的數(shù)學(xué)知識(shí)制定一個(gè)方案來(lái)決定去哪個(gè)景點(diǎn):(如圖)曲線
和直線
交于點(diǎn)
.以
為起點(diǎn),再?gòu)那
上任取兩個(gè)點(diǎn)分別為終點(diǎn)得到兩個(gè)向量,記這兩個(gè)向量的數(shù)量積為
.若
去九寨溝;若
去泰山;若
去長(zhǎng)白山;
去武夷山.![]()
(1)若從
這六個(gè)點(diǎn)中任取兩個(gè)點(diǎn)分別為終點(diǎn)得到兩個(gè)向量,分別求小明去九寨溝的概率和不去泰山的概率;
(2)按上述方案,小明在曲線
上取點(diǎn)
作為向量的終點(diǎn),則小明決定去武夷山.點(diǎn)
在曲線
上運(yùn)動(dòng),若點(diǎn)
的坐標(biāo)為
,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知
是定義在
上的偶函數(shù),對(duì)任意
,都有
,且當(dāng)
時(shí),
.若
在
上有5個(gè)根
,則
的值是( )
A.10
B.9
C.8
D.7
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線x+y+m=0與圓x2+y2=4交于不同的兩點(diǎn)A,B,O是坐標(biāo)原點(diǎn),
,則實(shí)數(shù)m的取值范圍是( )
A.[﹣2,2]
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在梯形ABCD中,AB∥CD,AD=DC=CB=a,∠ABC=60°,四邊形ACFE是矩形,且平面ACFE⊥平面ABCD,點(diǎn)M在線段EF上. (I)求證:BC⊥平面ACFE;
(II)當(dāng)EM為何值時(shí),AM∥平面BDF?證明你的結(jié)論.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在棱長(zhǎng)為1的正方體ABCD﹣A1B1C1D1中,給出以下結(jié)論: ①直線A1B與B1C所成的角為60°;
②若M是線段AC1上的動(dòng)點(diǎn),則直線CM與平面BC1D所成角的正弦值的取值范圍是
;
③若P,Q是線段AC上的動(dòng)點(diǎn),且PQ=1,則四面體B1D1PQ的體積恒為
.
其中,正確結(jié)論的個(gè)數(shù)是( )![]()
A.0個(gè)
B.1個(gè)
C.2個(gè)
D.3個(gè)
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com