【題目】已知圓
:
,定點(diǎn)
,
是圓
上的一動(dòng)點(diǎn),線段
的垂直平分線交半徑
于
點(diǎn).
(Ⅰ)求
點(diǎn)的軌跡
的方程;
(Ⅱ)四邊形
的四個(gè)頂點(diǎn)都在曲線
上,且對(duì)角線
,
過原點(diǎn)
,若
,求證:四邊形
的面積為定值,并求出此定值.
【答案】(1)
;(2)詳見解析.
【解析】試題分析:(1)依據(jù)題設(shè)建立方程求解;(2)依據(jù)題設(shè)建立直線方程與橢圓方程聯(lián)立,再運(yùn)用坐標(biāo)之間的關(guān)系進(jìn)行分析推證和探求:
試題解析:
(1)因?yàn)?/span>
在線段
的中垂線上,所以
.
所以
,
所以軌跡
是以
,
為焦點(diǎn)的橢圓,且
,
,所以
,
故軌跡
的方程
.
(2)證明:不妨設(shè)點(diǎn)
、
位于
軸的上方,則直線
的斜率存在,設(shè)
的方程為
,
,
.
聯(lián)立
,得
,
則
,
.①
由
,
得
.②
由①、②,得
.③
設(shè)原點(diǎn)到直線
的距離為
,
,
④
由③、④,得
,故四邊形
的面積為定值,且定值為
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=ax﹣(m﹣2)a﹣x (a>0且a≠1)是定義域?yàn)镽的奇函數(shù).
(1)求m的值;
(2)若f(1)<0,試判斷y=f(x)的單調(diào)性,并求使不等式f(x2+tx)+f(4﹣x)<0恒成立的t的取值范圍;
(3)若f(1)=
,g(x)=a2x+a﹣2x﹣2f(x),求g(x)在[1,+∞)上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】濰坊文化藝術(shù)中心的觀光塔是濰坊市的標(biāo)志性建筑,某班同學(xué)準(zhǔn)備測(cè)量觀光塔
的高度
(單位:米),如圖所示,垂直放置的標(biāo)桿
的高度
米,已知
,
.
(1)該班同學(xué)測(cè)得
一組數(shù)據(jù):
,請(qǐng)據(jù)此算出
的值;
(2)該班同學(xué)分析若干測(cè)得的數(shù)據(jù)后,發(fā)現(xiàn)適當(dāng)調(diào)整標(biāo)桿到觀光塔的距離
(單位:米),使
與
的差較大,可以提高測(cè)量精確度,若觀光塔高度為136米,問
為多大時(shí),
的值最大?
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校實(shí)行自主招生,參加自主招生的學(xué)生從8個(gè)試題中隨機(jī)挑選出4個(gè)進(jìn)行作答,至少答對(duì)3個(gè)才能通過初試.已知甲、乙兩人參加初試,在這8個(gè)試題中甲能答對(duì)6個(gè),乙能答對(duì)每個(gè)試題的概率為
,且甲、乙兩人是否答對(duì)每個(gè)試題互不影響.
(Ⅰ)求甲通過自主招生初試的概率;
(Ⅱ)試通過概率計(jì)算,分析甲、乙兩人誰通過自主招生初試的可能性更大;
(Ⅲ)記甲答對(duì)試題的個(gè)數(shù)為
,求
的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(
).
(Ⅰ)若
,求曲線
在
處的切線方程;
(Ⅱ)若對(duì)任意
,
,
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種藥種植基地有兩處種植區(qū)的藥材需在下周一、周二兩天內(nèi)采摘完畢,基地員工一天可以完成一處種植區(qū)的采摘,由于下雨會(huì)影響藥材的收益,若基地收益如下表所示:已知下周一和下周二無雨的概率相同且為
,兩天是否下雨互不影響,若兩天都下雨的概率為![]()
![]()
(1)求
及基地的預(yù)期收益;
(2)若該基地額外聘請(qǐng)工人,可在周一當(dāng)天完成全部采摘任務(wù),若周一無雨時(shí)收益為
萬元,有雨時(shí)收益為
萬元,且額外聘請(qǐng)工人的成本為
元,問該基地是否應(yīng)該額外聘請(qǐng)工人,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域?yàn)镽的函數(shù)f(x)=
是奇函數(shù),
(1)求實(shí)數(shù)a的值;
(2)若對(duì)任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求實(shí)數(shù)k的取值范圍;
(3)設(shè)關(guān)于x的方程f(4x﹣b)+f(﹣2x+1)=0有實(shí)數(shù)根,求實(shí)數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:
,點(diǎn)P
,過右焦點(diǎn)F作與y軸不垂直的直線l交橢圓C于A,B兩點(diǎn).
(Ⅰ )求橢圓C的離心率;
(Ⅱ )求證:以坐標(biāo)原點(diǎn)O為圓心與PA相切的圓,必與直線PB相切.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線
(
),焦點(diǎn)
到準(zhǔn)線的距離為
,過點(diǎn)![]()
作直線
交拋物線
于點(diǎn)
(點(diǎn)
在第一象限).
(Ⅰ)若點(diǎn)
焦點(diǎn)
重合,且弦長
,求直線
的方程;
(Ⅱ)若點(diǎn)
關(guān)于
軸的對(duì)稱點(diǎn)為
,直線
交x軸于點(diǎn)
,且
,求證:點(diǎn)B的坐標(biāo)是
,并求點(diǎn)
到直線
的距離
的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com