已知橢圓
:
(
),其焦距為
,若
(
),則稱橢圓
為“黃金橢圓”.
(1)求證:在黃金橢圓
:
(
)中,
、
、
成等比數(shù)列.
(2)黃金橢圓
:
(
)的右焦點為
,
為橢圓
上的
任意一點.是否存在過點
、
的直線
,使
與
軸的交點
滿足
?若存在,求直線
的斜率
;若不存在,請說明理由.
(3)在黃金橢圓中有真命題:已知黃金橢圓
:
(
)的左、右焦點分別是
、
,以
、
、
、
為頂點的菱形
的內(nèi)切圓過焦點
、
.試寫出“黃金雙曲線”的定義;對于上述命題,在黃金雙曲線中寫出相關(guān)的真命題,并加以證明.
(1)證明:由
及
,得![]()
,故
、
、
成等比數(shù)列.(3分)
(2)解:由題設(shè),顯然直線
垂直于
軸時不合題意,設(shè)直線
的方程為
,
得
,又
,及![]()
,得點
的坐標為
,(5分)
因為點
在橢圓上,所以
,又
,得
,
,故存在滿足題意的直線
,其斜率
.(6分)
(3)黃金雙曲線的定義:已知雙曲線
:
,其焦距為
,若
(或?qū)懗?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052317453610934058/SYS201205231748119218525653_DA.files/image026.png">
),則稱雙曲線
為“黃金雙曲線”.(8分)
在黃金雙曲線中有真命題:已知黃金雙曲線
:
的左、右焦點分別是
、
,以
、
、
、
為頂點的菱形
的內(nèi)切圓過頂點
、
.(10分)
證明:直線
的方程為
,原點到該直線的距離為
,
將
代入,得
,又將
代入,化簡得
,
故直線
與圓
相切,同理可證直線
、
、
均與圓
相切,即以
、
為直徑的圓
為菱形
的內(nèi)切圓,命題得證.(13分)
【解析】略
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓
的焦點在
軸,焦距為
,
是橢圓的焦點,
為橢圓上一點,且
.
(Ⅰ)求此橢圓
的標準方程;
(Ⅱ)判斷直線
與橢圓
的交點個數(shù),并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省泉州市德化一中高二(下)期末數(shù)學(xué)試卷(解析版) 題型:選擇題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年上海市盧灣區(qū)高考模擬考試(理) 題型:解答題
本題共有3個小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分6分.
已知橢圓
:
(
),其焦距為
,若
(
),則稱橢圓
為“黃金橢圓”.
(1)求證:在黃金橢圓
:
(
)中,
、
、
成等比數(shù)列.
(2)黃金橢圓
:
(
)的右焦點為
,
為橢圓
上的
任意一點.是否存在過點
、
的直線
,使
與
軸的交點
滿足
?若存在,求直線
的斜率
;若不存在,請說明理由.
(3)在黃金橢圓中有真命題:已知黃金橢圓
:
(
)的左、右
焦點分別是
、
,以
、
、
、
為頂點的菱形
的內(nèi)切圓過焦點
、
.
試寫出“黃金雙曲線”的定義;對于上述命題,在黃金雙曲線中寫出相關(guān)的真命題,并加以證明.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com