已知
,點(diǎn)B是
軸上的動(dòng)點(diǎn),過B作AB的垂線
交
軸于點(diǎn)Q,若
,
.
![]()
(1)求點(diǎn)P的軌跡方程;
(2)是否存在定直線
,以PM為直徑的圓與直線
的相交弦長(zhǎng)為定值,若存在,求出定直線方程;若不存在,請(qǐng)說明理由。
(1) y2=x;(2) 存在定直線x=![]()
【解析】
試題分析:(1)設(shè)B(0,t),Q(m,0),P(x,y),由射影定理并整理可得m=-4t,然后再利用已知條件
和向量相等的坐標(biāo)表示的充要條件列出關(guān)于x,y的方程即可得到點(diǎn)P的軌跡方程.(2)假設(shè)存在.根據(jù)已知幾何條件和勾股定理列出相交弦的表達(dá)式,再尋找a存在的條件即可.
試題解析:(1)設(shè)B(0,t),設(shè)Q(m,0),t2=
|m|,
m
0, m=-4t2,
Q(-4t2,0),設(shè)P(x,y),則
=(x-
,y),
=(-4t2-
,0),
2
=(-
,2 t), ![]()
+
=2
。
(x-
,y)+ (-4t2-
,0)= (-
,2 t),
x=4t2,y=2 t,
y2=x,此即點(diǎn)P的軌跡方程;
6分。
(2)由(1),點(diǎn)P的軌跡方程是y2=x;設(shè)P(y2,y),
M (4,0) ,則以PM為直徑的圓的圓心即PM的中點(diǎn)T(
,
), 以PM為直徑的圓與直線x=a的相交弦長(zhǎng):
L=2![]()
=2
=2
10分
若a為常數(shù),則對(duì)于任意實(shí)數(shù)y,L為定值的條件是a-
=0,
即a=
時(shí),L=![]()
存在定直線x=
,以PM為直徑的圓與直線x=
的相交弦長(zhǎng)為定值
。
(2)存在定直線x=
,以PM為直徑的圓與直線x=
的相交弦長(zhǎng)為定值![]()
考點(diǎn):1.射影定理;2.向量相等的坐標(biāo)表示的充要條件;3.勾股定理.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014屆吉林省白山市高三摸底考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知
,點(diǎn)B是
軸上的動(dòng)點(diǎn),過B作AB的垂線
交
軸于點(diǎn)Q,若
,
.
![]()
(1)求點(diǎn)P的軌跡方程;
(2)是否存在定直線
,以PM為直徑的圓與直線
的相交弦長(zhǎng)為定值,若存在,求出定直線方程;若不存在,請(qǐng)說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013年湖南省長(zhǎng)沙市高考模擬文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知
,點(diǎn)B是
軸上的動(dòng)點(diǎn),過B作AB的垂線
交
軸于點(diǎn)Q,若
,
.
![]()
(1)求點(diǎn)P的軌跡方程;
(2)是否存在定直線
,以PM為直徑的圓與直線
的相交弦長(zhǎng)為定值,若存在,求出定直線方程;若不存在,請(qǐng)說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖南省長(zhǎng)沙市高三高考模擬理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知
,點(diǎn)B是
軸上的動(dòng)點(diǎn),過B作AB的垂線
交
軸于點(diǎn)Q,若
,
.
![]()
(1)求點(diǎn)P的軌跡方程;
(2)是否存在定直線
,以PM為直徑的圓與直線
的相交弦長(zhǎng)為定值,若存在,求出定直線方程;若不存在,請(qǐng)說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知
,點(diǎn)B是
軸上的動(dòng)點(diǎn),過B作AB的垂線
交![]()
軸于點(diǎn)Q,若
,
.
![]()
(1)求點(diǎn)P的軌跡方程;
(2)是否存在定直線
,以PM為直徑的圓與直線
的相交弦長(zhǎng)為定值,若存在,求出定直線方程;若不存在,請(qǐng)說明理由。
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com