如圖,正三棱柱ABC-A1B1C1的所有棱長都為2,D為CC1中點(diǎn).
(1)求證:AB1⊥面A1BD;
(2)求二面角A-A1D-B的大小;
(3)求點(diǎn)C到平面A1BD的距離.
|
解法一:(1)取BC中點(diǎn)O,連結(jié)AO. ∵△ABC為正三角形,∴AO⊥BC. ∵正三棱柱ABC-A1B1C1中,平面ABC⊥平面BCC1B1, ∴AO⊥平面BCC1B1. 連結(jié)B1O,在正方形BB1C1C中,O、D分別為BC、CC1的中點(diǎn),∴B1O⊥BD,∴AB1⊥BD. 在正方形ABB1A1中,AB1⊥A1B,∴AB1⊥平面A1BD. (2)設(shè)AB1與A1B交于點(diǎn)G,在平面A1BD中,作GF⊥A1D于F,連結(jié)AF,由(1)得AB1⊥平面A1BD,∴AF⊥A1D, ∴∠AFG為二面角A-A1D-B的平面角. 在△AA1D中,由等面積法可求得AF= 所以二面角A-A1D-B的大小為 (3)△A1BD中,BD= S△BCD=1. 在正三棱柱中,A1到平面BCC1B1的距離為 設(shè)點(diǎn)C到平面A1BD的距離為d. 由 ∴ ∴點(diǎn)C到平面A1BD的距離為 解法二:
(1)取BC中點(diǎn)O,連結(jié)AO. ∵△ABC為正三角形,∴AO⊥BC. ∵在正三棱柱ABC-A1B1C1中,平面ABC⊥平面BCC1B1,∴AO⊥平面BCC1B1. 取B1C1中點(diǎn)O1,以O(shè)為原點(diǎn), ∴ (2)設(shè)平面A1AD的法向量為n=(x,y,z). 令z=1得n=( 由(1)知AB1⊥平面A1BD,∴ (3)由(2), ∵ ∴點(diǎn)C到平面A1BD的距離 |
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
| A、2 | ||
B、
| ||
C、
| ||
D、
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
| AO | OB1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com