【題目】(1)研究函數(shù)f(x)
在(0,π)上的單調(diào)性;
(2)求函數(shù)g(x)=x2+πcosx的最小值.
【答案】(1)f(x)在(0,π )遞減;(2)
.
【解析】
(1)根據(jù)
,求導(dǎo)得
,設(shè)m(x)=xcos x﹣sinx,x∈(0,π),通過求導(dǎo)來判斷其正負(fù),從而得到f′(x)的正負(fù),進(jìn)而研究f(x)的單調(diào)性.
(2)易知g(x)是偶函數(shù),故只需求x∈[0,+∞)時g(x)的最小值,求導(dǎo)得g′(x)=2x﹣πsin x,根據(jù)sinx的特點(diǎn),分x∈(0,
)和
時兩種情況討論g(x)單調(diào)性,進(jìn)而求其最小值.
(1)因為
,所以
,
設(shè)m(x)=xcos x﹣sinx,x∈(0,π),
m′(x)=﹣xsin x<0,
所以m(x)在(0,π )遞減,則m(x)<m(0)=0
故f′(x)<0,所以f(x)在(0,π )遞減;
(2)觀察知g(x)為偶函數(shù),故只需求x∈[0,+∞)時g(x)的最小值,
由g′(x)=2x﹣πsin x,當(dāng)x∈(0,
) 時,設(shè)n(x)=2x﹣π sin x,則n′(x)=2﹣π cos x,顯然 n′(x) 遞增,
而n′(0)=2﹣π<0,
,
由零點(diǎn)存在定理,存在唯一的
,使得n′(x0)=0
當(dāng)x∈(0,x0)時,n′(x)<0,n(x)遞減,
當(dāng)
時,n′(x)>0,n(x)遞增,
而n(0)=0,
,故
時,n(x)<0,
即
時,g′(x)<0,則g(x)遞減;
又當(dāng)
時,2x>π>π sin x,g′(x)>0,g(x) 遞增;
所以
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國古建筑中的窗飾是藝術(shù)和技術(shù)的統(tǒng)一體,給人于美的享受.如圖(1)為一花窗;圖(2)所示是一扇窗中的一格,呈長方形,長30 cm,寬26 cm,其內(nèi)部窗芯(不含長方形邊框)用一種條形木料做成,由兩個菱形和六根支條構(gòu)成,整個窗芯關(guān)于長方形邊框的兩條對稱軸成軸對稱.設(shè)菱形的兩條對角線長分別為x cm和y cm,窗芯所需條形木料的長度之和為L.
![]()
(1)試用x,y表示L;
(2)如果要求六根支條的長度均不小于2 cm,每個菱形的面積為130 cm2,那么做這樣一個窗芯至少需要多長的條形木料(不計榫卯及其它損耗)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,內(nèi)角A、B、C所對的邊分別為a、b、c,S為△ABC的面積,
,且A、B、C成等差數(shù)列,則C的大小為( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列
的公差不為零,且
,
、
、
成等比數(shù)列,數(shù)列
滿足![]()
(1)求數(shù)列
、
的通項公式;
(2)求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(Ⅰ)若直線
在點(diǎn)
處切線方程為
,求實(shí)數(shù)
的值;
(Ⅱ)若函數(shù)
有3個零點(diǎn),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐
中,
平面
,
,
,M為
中點(diǎn),H為線段
上一點(diǎn)(除
的中點(diǎn)外),且
.當(dāng)三棱錐
的體積最大時,則三棱錐
的外接球表面積為( )
![]()
A.
B.![]()
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),
軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,并在兩種坐標(biāo)系中取相同的長度單位.已知曲線
的極坐標(biāo)方程為
,曲線
的參數(shù)方程為
(
為參數(shù),
),射線
,
,
分別與曲線
交于極點(diǎn)
外的三點(diǎn)
.
(1)求
的值;
(2)當(dāng)
時,
兩點(diǎn)在曲線
上,求
與
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題共13分)已知函數(shù)
的最小正周期為
.
(Ⅰ)求
的值;
(Ⅱ)求函數(shù)
的單調(diào)區(qū)間及其圖象的對稱軸方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】冠狀病毒是一個大型病毒家族,己知可引起感冒以及中東呼吸綜合征(
)和嚴(yán)重急性呼吸綜合征(
)等較嚴(yán)重疾病.而今年出現(xiàn)在湖北武漢的新型冠狀病毒(
)是以前從未在人體中發(fā)現(xiàn)的冠狀病毒新毒株.人感染了新型冠狀病毒后常見體征有呼吸道癥狀、發(fā)熱、咳嗽、氣促和呼吸困難等.在較嚴(yán)重病例中,感染可導(dǎo)致肺炎、嚴(yán)重急性呼吸綜合征、腎衰竭,甚至死亡.
某醫(yī)院為篩查冠狀病毒,需要檢驗血液是否為陽性,現(xiàn)有n(
)份血液樣本,有以下兩種檢驗方式:
方式一:逐份檢驗,則需要檢驗n次.
方式二:混合檢驗,將其中k(
且
)份血液樣本分別取樣混合在一起檢驗.
若檢驗結(jié)果為陰性,這k份的血液全為陰性,因而這k份血液樣本只要檢驗一次就夠了,如果檢驗結(jié)果為陽性,為了明確這k份血液究竟哪幾份為陽性,就要對這k份再逐份檢驗,此時這k份血液的檢驗次數(shù)總共為
.
假設(shè)在接受檢驗的血液樣本中,每份樣本的檢驗結(jié)果是陽性還是陰性都是獨(dú)立的,且每份樣本是陽性結(jié)果的概率為p(
).現(xiàn)取其中k(
且
)份血液樣本,記采用逐份檢驗方式,樣本需要檢驗的總次數(shù)為
,采用混合檢驗方式,樣本需要檢驗的總次數(shù)為
.
(1)若
,試求p關(guān)于k的函數(shù)關(guān)系式
;
(2)若p與干擾素計量
相關(guān),其中
(
)是不同的正實(shí)數(shù),
滿足
且
(
)都有
成立.
(i)求證:數(shù)列
等比數(shù)列;
(ii)當(dāng)
時,采用混合檢驗方式可以使得樣本需要檢驗的總次數(shù)的期望值比逐份檢驗的總次數(shù)的期望值更少,求k的最大值
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com