欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=loga(x2-ax+
a
6
)
(-∞,
1
4
]
上單調遞增,則實數a的取值范圍是( 。
分析:當a>1時,根據復合函數的單調性,檢驗不滿足條件;當0<a<1時,y=logat 單調遞減,根據復合函數的單調性,要使函數f(x)=loga(x2-ax+
a
6
)
(-∞,
1
4
]
上單調遞增,只要t=x2-ax+
a
6
(-∞,
1
4
]
上單調遞減,且t>0恒成立即可.
解答:解:(1)當a>1時,由于y=logat 是(0,+∞)上的增函數,t=x2-ax+
a
6
(-∞,
1
4
]
上的減函數,
根據復合函數的單調性可得,函數f(x)=logax2-ax+
a
6
)在(-∞,
1
4
]
上單調遞減,故不滿足條件.
(2)當0<a<1時,由于y=logat 是(0,+∞)上的減函數,t=x2-ax+
a
6
是(-∞,
a
2
]上的減函數,
故要使函數f(x)=loga(x2-ax+
a
6
)
(-∞,
1
4
]
上單調遞增,須滿足條件:
1
4
a
2
(
1
4
)2-
1
4
a+
a
6
>0
,解得
1
2
≤a<
3
4

綜(1)、(2)得實數a的取值范圍是[
1
2
3
4
).
故選C.
點評:本題主要考查對數函數的單調性和特殊點,對數函數的定義域,復合函數的單調性,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=
1
3
x3-
3
2
ax2-(a-3)x+b

(1)若函數f(x)在P(0,f(0))的切線方程為y=5x+1,求實數a,b的值:
(2)當a<3時,令g(x)=
f′(x)
x
,求y=g(x)在[l,2]上的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
1
2
x2-alnx
的圖象在點P(2,f(2))處的切線方程為l:y=x+b
(1)求出函數y=f(x)的表達式和切線l的方程;
(2)當x∈[
1
e
,e]
時(其中e=2.71828…),不等式f(x)<k恒成立,求實數k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=lnx,g(x)=
12
x2+a
(a為常數),直線l與函數f(x)、g(x)的圖象都相切,且l與函數f(x)的圖象的切點的橫坐標為1.
(1)求直線l的方程及a的值;
(2)當k>0時,試討論方程f(1+x2)-g(x)=k的解的個數.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
13
x3+x2+ax

(1)討論f(x)的單調性;
(2)設f(x)有兩個極值點x1,x2,若過兩點(x1,f(x1)),(x2,f(x2))的直線l與x軸的交點在曲線y=f(x)上,求a的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=x3-
32
ax2+b
,a,b為實數,x∈R,a∈R.
(1)當1<a<2時,若f(x)在區(qū)間[-1,1]上的最小值、最大值分別為-2、1,求a、b的值;
(2)在(1)的條件下,求經過點P(2,1)且與曲線f(x)相切的直線l的方程;
(3)試討論函數F(x)=(f′(x)-2x2+4ax+a+1)•ex的極值點的個數.

查看答案和解析>>

同步練習冊答案