【題目】如圖,在四棱錐
,
平面
,
,
,且
,
,
.
![]()
(1)取
中點(diǎn)
,求證:
平面
;
(2)求直線
與
所成角的余弦值.
(3)在線段
上,是否存在一點(diǎn)
,使得二面角
的大小為
,如果存在,求
與平面
所成角,如果不存在,請(qǐng)說明理由.
【答案】(1)見解析(2)
(3)見解析
【解析】
試題分析:(1)建立如圖所示的坐標(biāo)系,先求
的方向向量,再出利用向量垂直數(shù)量積為零,列方程組求出平面
的法向量
,由
可得結(jié)果;(2)分別求出直線
與
的方向向量,利用空間向量夾角余弦公式可得直線
與
所成角的余弦值(結(jié)果注意取絕對(duì)值);(3)
,
,分別根據(jù)向量垂直數(shù)量積為零列方程組求出平面
與平面
的一個(gè)法向量,根據(jù)空間向量夾角余弦公式,可得
,從而可確定
的坐標(biāo),利用
可得結(jié)果.
試題解析:如圖建系:
,
,
,
,
,
![]()
(1)
中點(diǎn)
,
∴
,
設(shè)平面
的法向量為
,由
,
,
可得:
,∴
,∵
平面
,
∴
平面
.
(2)
,
,
∴
.
(3)設(shè)
及
,
∴
,
設(shè)平面
的法向量為
,
由
,
可得
,
平面
的法向量為
,
∴
,
解得
.
∴
,∴
,
,
∴
,∴
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)
已知函數(shù)
(其中a是實(shí)數(shù)).
(1)求
的單調(diào)區(qū)間;
(2)若設(shè)
,且
有兩個(gè)極值點(diǎn)
,求
取值范圍.(其中e為自然對(duì)數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給定函數(shù)
和
,若存在常數(shù)
,
,使得函數(shù)
和
對(duì)其公共定義域
的任何實(shí)數(shù)
分別滿足
和
,則稱直線
:
為函數(shù)
和
的“隔離直線”,給出下列四組函數(shù):
(1)
,
; (2)
,
;
(3)
,
; (4)
,
;
其中函數(shù)
和
存在“隔離直線”的序號(hào)是( )
A.(1)(3)B.(1)(3)(4)C.(1)(2)(3)D.(2)(4)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】春節(jié)過后,甲、乙、丙三人談?wù)摰接嘘P(guān)
部電影
,
,
的情況.
甲說:我沒有看過電影
,但是有
部電影我們?nèi)齻(gè)都看過;
乙說:三部電影中有
部電影我們?nèi)酥兄挥幸蝗丝催^;
丙說:我和甲看的電影有
部相同,有
部不同.
假如他們都說的是真話,則由此可判斷三部電影中乙看過的部數(shù)是( )
A.
部B.
部C.
部D.
部或
部
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了調(diào)查某大學(xué)學(xué)生的某天上網(wǎng)的時(shí)間,隨機(jī)對(duì)
名男生和
名女生進(jìn)行了不記名的問卷調(diào)查.得到了如下的統(tǒng)計(jì)結(jié)果:
表1:男生上網(wǎng)時(shí)間與頻數(shù)分布表
上網(wǎng)時(shí)間(分鐘) |
|
|
|
|
|
人數(shù) |
|
|
|
|
|
表2:女生上網(wǎng)時(shí)間與頻數(shù)分布表
上網(wǎng)時(shí)間(分鐘) |
|
|
|
|
|
人數(shù) |
|
|
|
|
|
(1)用分層抽樣在
選取
人,再隨機(jī)抽取
人,求抽取的
人都是女生的概率;
(2)完成下面的
列聯(lián)表,并回答能否有
的把握認(rèn)為“大學(xué)生上網(wǎng)時(shí)間與性別有關(guān)”?
上網(wǎng)時(shí)間少于 | 上網(wǎng)時(shí)間不少于 | 合計(jì) | |
男生 | |||
女生 | |||
合計(jì) |
附:![]()
|
|
|
|
|
|
|
|
|
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】三角形的三個(gè)頂點(diǎn)的坐標(biāo)分別為
,
,
,則該三角形的重心(三邊中線交點(diǎn))的坐標(biāo)為
.類比這個(gè)結(jié)論,連接四面體的一個(gè)頂點(diǎn)及其對(duì)面三角形重心的線段稱為四面體的中線,四面體的四條中線交于一點(diǎn),該點(diǎn)稱為四面體的重心.若四面體的四個(gè)頂點(diǎn)的空間坐標(biāo)分別為
,
,
,
,則該四面體的重心的坐標(biāo)為( )
A. ![]()
B. ![]()
C. ![]()
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
的圖像過點(diǎn)
,且在
處取得極值.
(1)若對(duì)任意
有
恒成立,求實(shí)數(shù)
的取值范圍;
(2)當(dāng)
,試討論函數(shù)
的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著生活節(jié)奏的加快以及智能手機(jī)的普及,外賣點(diǎn)餐逐漸成為越來越多用戶的餐飲消費(fèi)習(xí)慣.由此催生了一批外賣點(diǎn)餐平臺(tái),已知某外賣平臺(tái)的送餐費(fèi)用與送餐距離有關(guān)(該平臺(tái)只給5千米范圍內(nèi)配送),為調(diào)査送餐員的送餐收入,現(xiàn)從該平臺(tái)隨機(jī)抽取80名點(diǎn)外賣的用戶進(jìn)行統(tǒng)計(jì),按送餐距離分類統(tǒng)計(jì)結(jié)果如下表:
![]()
以這80名用戶送餐距離位于各區(qū)間的頻率代替送餐距離位于該區(qū)間的概率.
(1)從這80名點(diǎn)外賣的用戶中任取一名用戶.求該用戶的送餐距離不超過3千米的概率;
(2)試估計(jì)利用該平臺(tái)點(diǎn)外賣用戶的平均送餐距離;
(3)若該外賣平臺(tái)給送餐員的送餐贄用與送餐距離有關(guān),規(guī)定2千米內(nèi)為短距離,每份3元,2千米到4千米為中距離,每份5元;超過4千米為遠(yuǎn)距離,每份9元,若送餐員一天的目標(biāo)收 人不低于150元,試估計(jì)一天至少要送多少份外賣?
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com