(本小題12分)如圖,四邊形ABCD是邊長(zhǎng)為1的正方形,MD⊥平面ABCD,NB⊥平面ABCD,且MD=NB=1,E是MN的中點(diǎn)。
![]()
(1)求證:平面AEC⊥平面AMN; (6分)
(2)求二面角M-AC-N的余弦值。 (6分)
(1)略
(2)![]()
【解析】方法一、傳統(tǒng)幾何
(1)MD⊥平面ABCD,NB⊥平面ANCD,由直角三角形易得:AM=AN=MN=NC=MC=
,E是MN中點(diǎn),可得AE⊥MN,CE⊥MN,又AE∩EC=E從而MN⊥平面AEC;
(2)這里也有多種方法:
連接BD交AC與點(diǎn)O,底面是正方形得AC⊥BD,OE//MD推得OE⊥AC,得AC⊥平面MDBN,所以∠MON就是二面角M-AC-N的平面角,在矩形MDBN中根據(jù)長(zhǎng)度可以求得cos∠MON=
。
![]()
(亦可把二面角M-AC-N,拆成兩個(gè)二面角M-AC-E和E-AC-N;或者抽取出正四面體MNAC,再求側(cè)面與地面所成角;或者求平面ACN的垂線(xiàn)MB和平面ACM的垂線(xiàn)DN之間的夾角)
方法二、向量幾何
MD⊥平面ABCD
MD⊥DA,MD⊥DC,又底面ABCD為正方形
DA⊥DC,故以點(diǎn)D為坐標(biāo)原點(diǎn),DA為x軸,DC為y軸,DM為z軸,如圖建立空間直角坐標(biāo)系。
則各點(diǎn)的坐標(biāo)A(1,0,0),B(1,1,0),C(0,1,0),M(0,0,1),N(1,1,1),
E(
,
,1)
……3分
(1)
·
=…=0
MN⊥AE;
·
=…=0
MN⊥AC
又AC∩AE=E,故MN⊥平面AEC; ………7分
(2)不妨設(shè)平面AMC的法向量為
=(1,y,z),平面ANC的法向量為
=(1,m,n) 則由
⊥
,
⊥![]()
![]()
·
=0,
·
=0,代入坐標(biāo)解得
=(1,1,1)---9分
由
⊥
,
⊥![]()
![]()
·
=0,
·
=0,代入坐標(biāo)運(yùn)算得
=(1,1,-1)--11分
Cos<
,
>=
=
-------12分
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年湖南省常德市高三質(zhì)量檢測(cè)考試數(shù)學(xué)理卷 題型:解答題
(本小題12分)
如圖3,已知在側(cè)棱垂直于底面
的三棱柱
中,AC=BC, AC⊥BC,點(diǎn)D是A1B1中點(diǎn).
(1)求證:平面AC1D⊥平面A1ABB1;
(2)若AC1與平面A1ABB1所成角的正弦值
為
,求二面角D- AC1-A1的余弦值.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年河北省高三高考?jí)狠S模擬考試文數(shù) 題型:解答題
(本小題12分)如圖,四棱錐
中,
側(cè)面
是邊長(zhǎng)為2的正三角形,且與底面垂直,底面
是
的菱形,
為
的中點(diǎn).
(1)求
與底面
所成角的大;
(2)求證:
平面
;
(3)求二面角
的余弦值.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014屆海南省高一上學(xué)期教學(xué)質(zhì)量監(jiān)測(cè)三數(shù)學(xué) 題型:解答題
(本小題12分)如圖,四棱錐
中,底面
是正方形,
,
底面
,
分別在
上,且![]()
(1)求證:平面
∥平面
.
(2)求直線(xiàn)
與平面面
所成角的正弦值.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011年海南省高二下學(xué)期質(zhì)量檢測(cè)數(shù)學(xué)文卷(一) 題型:解答題
(本小題12分)
如圖:⊙O為△ABC的外接圓,AB=AC,過(guò)點(diǎn)A的直線(xiàn)交⊙O于D,交BC延長(zhǎng)線(xiàn)于F,DE是BD的延長(zhǎng)線(xiàn),連接CD。
![]()
① 求證:∠EDF=∠CDF;
②求證:AB2=AF·AD。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2009-2010集寧一中學(xué)高三年級(jí)理科數(shù)學(xué)第一學(xué)期期末考試試題 題型:解答題
(本小題12分)如圖,四面體ABCD中,O、E分別是BD、BC的中點(diǎn),
![]()
(I)求證:
平面BCD;
(II)求異面直線(xiàn)AB與CD所成角的大。
(III)求點(diǎn)E到平面ACD的距離。
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com