| A. | $\frac{5}{3}$ | B. | $\frac{4}{3}$ | C. | -$\frac{4}{3}$ | D. | -$\frac{2}{3}$ |
分析 設(shè)直線方程為y-1=k(x-1),即kx-y-k+1=0,利用直線l與圓(x-3)2+y2=5相切,建立方程求出tanα=k=2,再利用二倍角公式,即可求出tan2α的值.
解答 解:由題意,圓心坐標(biāo)為C(3,0),設(shè)切點(diǎn)為P,則直線PC的斜率為k=$\frac{1-0}{1-3}$=-$\frac{1}{2}$,
依題意l⊥PC,所以直線l的斜率為k1=2,即tanα=2,
所以tan2α=$\frac{2tanα}{1-ta{n}^{2}α}$=$\frac{2×2}{1-{2}^{2}}$=-$\frac{4}{3}$.
故選:C.
點(diǎn)評(píng) 本題考查直線與圓的位置關(guān)系,考查點(diǎn)到直線的距離公式,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 1-i | B. | -1-i | C. | -1+i | D. | 1+i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | a<-6 | B. | a≤-6 | C. | a>-6 | D. | a≥-6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com