欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

12.已知函數(shù)$f(x)=\left\{\begin{array}{l}2,x>m\\{x^2}+4x+2,x≤m\end{array}\right.$的圖象與直線y=x恰有三個公共點,則實數(shù)m的取值范圍是[-1,2).

分析 由題意可得只要滿足直線y=x和射線y=2(x>m)有一個交點,而且直線y=x與函數(shù)f(x)=x2+4x+2的兩個交點即可,畫圖便知,直線y=x與函數(shù)f(x)=x2+4x+2的圖象的兩個交點為(-2,-2)(-1,-1),由此可得實數(shù)m的取值范圍.

解答 解:由題意可得射線y=x與函數(shù)f(x)=2(x>m)有且只有一個交點.
而直線y=x與函數(shù)f(x)=x2+4x+2,至多兩個交點,
題目需要三個交點,則只要滿足直線y=x與函數(shù)f(x)=x2+4x+2的圖象有兩個交點即可,

畫圖便知,y=x與函數(shù)f(x)=x2+4x+2的圖象交點為A(-2,-2)、B(-1,-1),故有 m≥-1.
而當(dāng)m≥2時,直線y=x和射線y=2(x>m)無交點,故實數(shù)m的取值范圍是[-1,2),
故答案為:[-1,2)

點評 本題考查的知識點分段函數(shù),分類討論思想,數(shù)形結(jié)合思想,難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.將一個棱長為a的正方體嵌入到四個半徑為1且兩兩相切的實心小球所形成的球間空隙內(nèi),使得正方體能夠任意自由地轉(zhuǎn)動,則a的最大值為(  )
A.$\frac{{2\sqrt{2}-\sqrt{6}}}{6}$B.$\frac{{2\sqrt{3}-\sqrt{6}}}{6}$C.$\frac{{2\sqrt{3}-2\sqrt{2}}}{3}$D.$\frac{{3\sqrt{2}-2\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如圖,將四邊形ABCD中△ADC沿著AC翻折到ADlC,則翻折過程中線段DB中點M的軌跡是( 。
A.橢圓的一段B.拋物線的一段C.一段圓弧D.雙曲線的一段

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.曲線y=-$\frac{1}{2}$x+lnx的切線是直線y=$\frac{1}{2}$x+b,則b的值為( 。
A.-2B.-1C.-$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.期中考試后,我校對甲、乙兩個文科班的數(shù)學(xué)考試成績進行分析.規(guī)定:大于或等于120分為優(yōu)秀,120分以下為非優(yōu)秀.統(tǒng)計成績后,得到如下的2×2列聯(lián)表:
優(yōu)秀人數(shù)非優(yōu)秀人數(shù)合計
甲班10x50
乙班y3050
合計3070100
(1)求出表格中x,y的值;
(2)根據(jù)列聯(lián)表的數(shù)據(jù),判斷是否有99%的把握認為“成績與班級有關(guān)系”,并說明理由.
參考公式與臨界值表:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k)0.1000.0500.0250.0100.001
k2.7063.8415.0246.63510.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=a(x-1)(ex-a)(常數(shù)a∈R且a≠0).
(Ⅰ)證明:當(dāng)a>0時,函數(shù)f(x)有且只有一個極值點;
(Ⅱ)若函數(shù)f(x)存在兩個極值點x1,x2,證明:0<f(x1)<$\frac{4}{{e}^{2}}$且0<f(x2)<$\frac{4}{{e}^{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在△ABC中,如果acosB+acosC=b+c.試判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知△ABC中,A、B、C分別是三個內(nèi)角,a、b、c分別是角A、B、C所對的邊,且a=$\sqrt{3}$,A=$\frac{π}{3}$.
(1)求△ABC的周長的最大值.
(2)求△ABC面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在數(shù)列{an}中,a14=2,an+1=$\frac{1}{1-{a}_{n}}$,求a1

查看答案和解析>>

同步練習(xí)冊答案