(本小題滿分16分)已知負(fù)數(shù)a和正數(shù)b,令a1=a,b1=b,且對(duì)任意的正整數(shù)k,當(dāng)≥0時(shí),有ak+1=ak,bk+1=;當(dāng)<0,有ak+1 =,bk+1 = bk.(1)求bn-an關(guān)于n的表達(dá)式; (2)是否存在a,b,使得對(duì)任意的正整數(shù)n都有bn>bn+1?請(qǐng)說明理由.(3)若對(duì)任意的正整數(shù)n,都有b2n-1>b2n,且b2n=b2n+1,求bn的表達(dá)式.w.w.w.k.s.5.u.c.o.m
(Ⅰ) bn-an=(b-a)()n-1. (Ⅱ) 不存在 (Ⅲ)![]()
:(Ⅰ)當(dāng)≥0時(shí),bk+1-ak+1= -ak= ;
當(dāng)<0, bk+1-ak+1 = bk- = .
所以,總有bk+1-ak+1 = (bk-ak), ………………3分
因此,數(shù)列{bn-an}是首項(xiàng)為b-a,公比為的等比數(shù)列.
所以bn-an=(b-a)()n-1. ………………5分
(Ⅱ) 假設(shè)存在a,b,對(duì)任意的正整數(shù)n都有bn>bn+1,即an=an+1.
所以an =an-1…= a1=a,又bn-an=(b-a)()n-1,所以bn=a+ (b-a)()n-1,……… 8分
又≥0,即a+ (b-a)()n≥0, 即2n≤,
因?yàn)槭浅?shù),故2n≤不可能對(duì)任意正整數(shù)n恒成立.
故不存在a,b,使得對(duì)任意的正整數(shù)n都有bn>bn+1. …………11分
(Ⅲ)由b2n-1>b2n,可知a2n -1=a2n,b2n=,
所以b2n=,即b2n-b2n-1=-( b2n-a2n)=- (b-a) ()2n-1. w.w.w.k.s.5.u.c.o.m
又b2n=b2n+1,故b2n+1-b2n-1=-( b2n-a2n)= (a-b) ()2n-1, …………13分
∴b2n-1= (b2n-1-b2n-3)+( b2n-3-b2n-5)+…+( b3-b1)+b1
= (a-b)[ ()2n-3+ ()2n-5+…+ ()1]+b=(a-b)+b= (a-b)[ 1- ()n-1]+b.…15分
當(dāng)n為奇數(shù)時(shí),令n=2m-1,可得bn=b2m-1= (a-b)[ 1- ()m-1]+b= (a-b)[ 1- ()n-1]+b,
當(dāng)n為偶數(shù)時(shí),可得bn=bn+1= (a-b)[ 1- ()n]+b故
……16分
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(2010江蘇卷)18、(本小題滿分16分)
在平面直角坐標(biāo)系
中,如圖,已知橢圓
的左、右頂點(diǎn)為A、B,右焦點(diǎn)為F。設(shè)過點(diǎn)T(
)的直線TA、TB與橢圓分別交于點(diǎn)M
、
,其中m>0,
。
(1)設(shè)動(dòng)點(diǎn)P滿足
,求點(diǎn)P的軌跡;
(2)設(shè)
,求點(diǎn)T的坐標(biāo);
(3)設(shè)
,求證:直線MN必過x軸上的一定點(diǎn)(其坐標(biāo)與m無關(guān))。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年泰州中學(xué)高一下學(xué)期期末測(cè)試數(shù)學(xué) 題型:解答題
(本小題滿分16分)
函數(shù)
,
(
),
A=![]()
(Ⅰ)求集合A;
(Ⅱ)如果
,對(duì)任意
時(shí),
恒成立,求實(shí)數(shù)
的范圍;
(Ⅲ)如果
,當(dāng)“
對(duì)任意
恒成立”與“
在
內(nèi)必有解”同時(shí)成立時(shí),求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆江蘇大豐新豐中學(xué)高二上期中考試文數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分16分) 本題請(qǐng)注意換算單位
某開發(fā)商用9000萬元在市區(qū)購(gòu)買一塊土地建一幢寫字樓,規(guī)劃要求寫字樓每層建筑面積為2000平方米。已知該寫字樓第一層的建筑費(fèi)用為每平方米4000元,從第二層開始,每一層的建筑費(fèi)用比其下面一層每平方米增加100元。
(1)若該寫字樓共x層,總開發(fā)費(fèi)用為y萬元,求函數(shù)y=f(x)的表達(dá)式;
(總開發(fā)費(fèi)用=總建筑費(fèi)用+購(gòu)地費(fèi)用)
(2)要使整幢寫字樓每平方米開發(fā)費(fèi)用最低,該寫字樓應(yīng)建為多少層?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆安徽省蚌埠市高二下學(xué)期期中聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分16分)設(shè)命題
:方程
無實(shí)數(shù)根;
命題
:函數(shù)
的值域是
.如果命題
為真命題,
為假命題,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年江蘇省高一第三階段檢測(cè)數(shù)學(xué)卷 題型:解答題
(本小題滿分16分)
已知函數(shù)f(x)=
為偶函數(shù),且函數(shù)y=f(x)圖象的兩相鄰對(duì)稱軸間的距離為![]()
(Ⅰ)求f(
)的值;
(Ⅱ)將函數(shù)y=f(x)的圖象向右平移
個(gè)單位后,再將得到的圖象上各點(diǎn)的橫坐標(biāo)延長(zhǎng)到原來的4倍,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象,求g(x)的單調(diào)遞減區(qū)間.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com