【題目】如圖,墻上有一壁畫,最高點
離地面4米,最低點
離地面2米,觀察者從距離墻
米,離地面高
米的
處觀賞該壁畫,設(shè)觀賞視角![]()
![]()
(1)若
問:觀察者離墻多遠時,視角
最大?
(2)若
當
變化時,求
的取值范圍.
【答案】(1)![]()
(2)3≤x≤4.
【解析】
試題(1)利用兩角差的正切公式建立函數(shù)關(guān)系式,根據(jù)基本不等式求
最值,最后根據(jù)正切函數(shù)單調(diào)性確定
最大時取法,(2)利用兩角差的正切公式建立等量關(guān)系式,進行參變分離得
,再根據(jù)a的范圍確定
范圍,最后解不等式得
的取值范圍.
試題解析:(1)當
時,過
作
的垂線,垂足為
,
則
,且
,
由已知觀察者離墻
米,且
,
則
,
所以,
,
當且僅當
時,取“
”.
又因為
在
上單調(diào)增,所以,當觀察者離墻
米時,視角
最大.
(2)由題意得,
,又
,
所以
,
所以
,
當
時,
,所以
,
即
,解得
或
,
又因為
,所以
,
所以
的取值范圍為
.
![]()
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系
中,拋物線
的焦點為
,點
是拋物線
上一點,且
.
(1)求
的值;
(2)若
為拋物線
上異于
的兩點,且
.記點
到直線
的距離分別為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓Γ:
=1(a>b>0)的左右焦點分別為F1 , F2 , 焦距為2c,若直線y=
與橢圓Γ的一個交點M滿足∠MF1F2=2∠MF2F1 , 則該橢圓的離心率等于 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合A={x|x2-3x+2=0},B={x|x2+(a-1)x+a2-5=0}.
(1)若A∩B={2},求實數(shù)a的值;
(2)若A∪B=A,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某聯(lián)歡晚會舉行抽獎活動,舉辦方設(shè)置了甲、乙兩種抽獎方案,方案甲的中獎率為
,中獎可以獲得2分;方案乙的中獎率為
,中獎可以獲得3分;未中獎則不得分.每人有且只有一次抽獎機會,每次抽獎中獎與否互不影響,晚會結(jié)束后憑分數(shù)兌換獎品.
(1)若小明選擇方案甲抽獎,小紅選擇方案乙抽獎,記他們的累計得分為x,求x≤3的概率;
(2)若小明、小紅兩人都選擇方案甲或都選擇方案乙進行抽獎,問:他們選擇何種方案抽獎,累計得分的數(shù)學(xué)期望較大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系
中,以
軸為始邊做兩個銳角
,它們的終邊分別與單位圓相交于A,B兩點,已知A,B的橫坐標分別為![]()
![]()
(1)求
的值; (2)求
的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
,曲線
在點
處的切線方程為
.
(1)求
,
的值;
(2)若
,求函數(shù)
的單調(diào)區(qū)間;
(3)設(shè)函數(shù)
,且
在區(qū)間
內(nèi)存在單調(diào)遞減區(qū)間,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=ax﹣(1+a2)x2 , 其中a>0,區(qū)間I={x|f(x)>0}
(1)求I的長度(注:區(qū)間(a,β)的長度定義為β﹣α);
(2)給定常數(shù)k∈(0,1),當1﹣k≤a≤1+k時,求I長度的最小值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com