【題目】已知函數(shù)
,
,若對任意給定的
,關(guān)于
的方程
在區(qū)間
上總存在唯一的一個(gè)解,則實(shí)數(shù)
的取值范圍是( )
A.
B.
C.
D. ![]()
【答案】B
【解析】分析:由題意可以把問題轉(zhuǎn)化為求函數(shù)f(x)和函數(shù)g(x)的值域,并有題意轉(zhuǎn)化為兩個(gè)函數(shù)的值域的關(guān)系問題.
詳解:解f′(x)=6ax2﹣6ax=6ax(x﹣1),
①當(dāng)a=0時(shí),f(x)=1,g(x)=
,顯然不可能滿足題意;
②當(dāng)a>0時(shí),f'(x)=6ax2﹣6ax=6ax(x﹣1),
x,f′(x),f(x)的變化如下:
![]()
又因?yàn)楫?dāng)a>0時(shí),g(x)=﹣
x+
上是減函數(shù),
對任意m∈[0,2],g(m)∈[﹣
+
,
],
由題意,必有g(m)max≤f(x)max,且1﹣a>0,
故
,解得:
≤a<1,
③當(dāng)a<0時(shí),g(x)=﹣
x+
上是增函數(shù),不合題意;
綜上,a∈[
,1),
故選:B.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
為奇函數(shù).
(1)求
的值,并求
的定義域;
(2)判斷函數(shù)
的單調(diào)性,不需要證明;
(3)若對于任意
,是否存在實(shí)數(shù)
,使得不等式
恒成立?若存在,求出實(shí)數(shù)
的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知?jiǎng)訄A
過定點(diǎn)
且與
軸相切,點(diǎn)
關(guān)于圓心
的對稱點(diǎn)為
,動點(diǎn)
的軌跡記為
.
(1)求
的方程;
(2)設(shè)直線
:
與曲線
交于點(diǎn)
、
;直線
:
與
交于點(diǎn)
,
,其中
,以
、
為直徑的圓
、
(
、
為圓心)的公共弦所在直線記為
,求
到直線
距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有A、B兩種型號臺燈,若購買2臺A型臺燈和6臺B型臺燈共需610元,若購買6臺A型臺燈和2臺B型臺燈共需470元.
(1)求A、B兩種型號臺燈每臺分別多少元?
(2)采購員小紅想采購A、B兩種型號臺燈共30臺,且總費(fèi)用不超過2200元,則最多能采購B型臺燈多少臺?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)討論
的單調(diào)性;
(2)若函數(shù)
有三個(gè)零點(diǎn),證明:當(dāng)
時(shí),
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高中嘗試進(jìn)行課堂改革.現(xiàn)高一有
兩個(gè)成績相當(dāng)?shù)陌嗉墸渲?/span>
班級參與改革,
班級沒有參與改革.經(jīng)過一段時(shí)間,對學(xué)生學(xué)習(xí)效果進(jìn)行檢測,規(guī)定成績提高超過
分的為進(jìn)步明顯,得到如下列聯(lián)表.
進(jìn)步明顯 | 進(jìn)步不明顯 | 合計(jì) | |
|
|
|
|
|
|
|
|
合計(jì) |
|
|
|
(1)是否有
的把握認(rèn)為成績進(jìn)步是否明顯與課堂是否改革有關(guān)?
(2)按照分層抽樣的方式從
班中進(jìn)步明顯的學(xué)生中抽取
人做進(jìn)一步調(diào)查,然后從
人中抽
人進(jìn)行座談,求這
人來自不同班級的概率.
附:
,當(dāng)
時(shí),有
的把握說事件
與
有關(guān).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
.
(1)討論函數(shù)
的單調(diào)性;
(2)設(shè)函數(shù)
,若
在
上存在極值,求
的取值范圍,并判斷極值的正負(fù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
(
為常數(shù),且
).
(1)若當(dāng)
時(shí),函數(shù)
與
的圖象有且只要一個(gè)交點(diǎn),試確定自然數(shù)
的值,使得
(參考數(shù)值
,
,
,
);
(2)當(dāng)
時(shí),證明:
(其中
為自然對數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地?cái)M規(guī)劃種植一批芍藥,為了美觀,將種植區(qū)域(區(qū)域I)設(shè)計(jì)成半徑為1km的扇形
,中心角
(
).為方便觀賞,增加收入,在種植區(qū)域外圍規(guī)劃觀賞區(qū)(區(qū)域II)和休閑區(qū)(區(qū)域III),并將外圍區(qū)域按如圖所示的方案擴(kuò)建成正方形
,其中點(diǎn)
,
分別在邊
和
上.已知種植區(qū)、觀賞區(qū)和休閑區(qū)每平方千米的年收入分別是10萬元、20萬元、20萬元.
(1)要使觀賞區(qū)的年收入不低于5萬元,求
的最大值;
(2)試問:當(dāng)
為多少時(shí),年總收入最大?
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com