【題目】如圖,在正方體
中,
是棱
上動點,下列說法正確的是( ).
![]()
A.對任意動點
,在平面
內(nèi)存在與平面
平行的直線
B.對任意動點
,在平面
內(nèi)存在與平面
垂直的直線
C.當(dāng)點
從
運動到
的過程中,
與平面
所成的角變大
D.當(dāng)點
從
運動到
的過程中,點
到平面
的距離逐漸變小
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)
.
(1)當(dāng)a≤e時,求證:當(dāng)x=1時函數(shù)f(x)取得極小值:
(2)若函數(shù)f(x)有4個零點,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)整數(shù)數(shù)列{an}共有2n(
)項,滿足
,
,且
(
).
(1)當(dāng)
時,寫出滿足條件的數(shù)列的個數(shù);
(2)當(dāng)
時,求滿足條件的數(shù)列的個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,長途車站P與地鐵站O的距離為
千米,從地鐵站O出發(fā)有兩條道路l1,l2,經(jīng)測量,l1,l2的夾角為45°,OP與l1的夾角
滿足tan
=
(其中0<θ<
),現(xiàn)要經(jīng)過P修條直路分別與道路l1,l2交匯于A,B兩點,并在A,B處設(shè)立公共自行車停放點.
![]()
(1)已知修建道路PA,PB的單位造價分別為2m元/千米和m元/千米,若兩段道路的總造價相等,求此時點A,B之間的距離;
(2)考慮環(huán)境因素,需要對OA,OB段道路進行翻修,OA,OB段的翻修單價分別為n元/千米和
n元/千米,要使兩段道路的翻修總價最少,試確定A,B點的位置.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系
中,直線
的參數(shù)方程為
(
為參數(shù)),以坐標(biāo)原點為極點,
軸的正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(Ⅰ)求直線
的普通方程和曲線
的直角坐標(biāo)方程;
(Ⅱ)設(shè)
為曲線
上的點,
,垂足為
,若
的最小值為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C的方程為:(x-3)2+(y-2)2=r2(r>0),若直線3x+y=3上存在一點P,在圓C上總存在不同的兩點M,N,使得點M是線段PN的中點,則圓C的半徑r的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為調(diào)查高三年級學(xué)生的身高情況,按隨機抽樣的方法抽取100名學(xué)生,得到男生身高情況的頻率分布直方圖(圖(1))和女生身高情況的頻率分布直方圖(圖(2)).已知圖(1)中身高在
的男生人數(shù)有16人.
![]()
(1)試問在抽取的學(xué)生中,男,女生各有多少人?
(2)根據(jù)頻率分布直方圖,完成下列的
列聯(lián)表,并判斷能有多大(百分之幾)的把握認(rèn)為“身高與性別有關(guān)”?
|
| 總計 | |
男生身高 | |||
女生身高 | |||
總計 |
(3)在上述100名學(xué)生中,從身高在
之間的男生和身高在
之間的女生中間按男、女性別分層抽樣的方法,抽出6人,從這6人中選派2人當(dāng)旗手,求2人中恰好有一名女生的概率.
參考公式:![]()
參考數(shù)據(jù):
| 0.025 | 0.010 | 0.005 | 0.001 |
| 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a,b為實數(shù),函數(shù)
.
(1)已知
,討論
的奇偶性;
(2)若
,①若
,求
在
上的值域;
②若
,解關(guān)于x的不等式
.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com