【題目】已知
、
、
、
是同一平面上不共線的四點(diǎn),若存在一組正實(shí)數(shù)
、
、
,使得
,則三個(gè)角
、
、
( )
A. 都是鈍角B. 至少有兩個(gè)鈍角
C. 恰有兩個(gè)鈍角D. 至多有兩個(gè)鈍角
【答案】B
【解析】
根據(jù)
,移項(xiàng)得
,兩邊同時(shí)點(diǎn)乘
,得![]()
0,再根據(jù)正實(shí)數(shù)
,
和向量數(shù)量積的定義即可確定∠BOC、∠COA至少有一個(gè)為鈍角,同理可證明∠AOB、∠BOC至少有一個(gè)為鈍角,∠AOB、∠COA至少有一個(gè)為鈍角,從而得到結(jié)論.
∵λ1
λ2
λ3
,
∴
,兩邊同時(shí)點(diǎn)乘
,得
![]()
,
即
|
||
|cos∠COA+
cos∠BOC=﹣
0,
∴∠BOC、∠COA至少有一個(gè)為鈍角,
同理∠AOB、∠BOC至少有一個(gè)為鈍角,∠AOB、∠COA至少有一個(gè)為鈍角,
因此∠AOB、∠BOC、∠COA至少有兩個(gè)鈍角.
故選:D.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,
若關(guān)于
的方程
有兩個(gè)不等實(shí)數(shù)根
,
,且
,則
的最小值是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=
﹣k(
+lnx)(k為常數(shù),e=2.71828…是自然對(duì)數(shù)的底數(shù)).
(1)當(dāng)k≤0時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在(0,2)內(nèi)存在兩個(gè)極值點(diǎn),求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,內(nèi)角A、B、C的對(duì)邊分別為a,b,c,且a>c,已知
=2,cosB=
,b=3,求:
(1)a和c的值;
(2)cos(B﹣C)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
有兩個(gè)極值點(diǎn)
(
為自然對(duì)數(shù)的底數(shù)).
(Ⅰ)求實(shí)數(shù)
的取值范圍;
(Ⅱ)求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列
的前
項(xiàng)和為
,且滿足
.
(I)求證:
是等比數(shù)列;
(II)求證:
不是等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,
.
(1)求
的最大值與最小值;
(2)若
對(duì)任意的
,
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知首項(xiàng)是1的兩個(gè)數(shù)列{an},{bn}(bn≠0,n∈N*)滿足anbn+1﹣an+1bn+2bn+1bn=0.
(1)令cn=
,求數(shù)列{cn}的通項(xiàng)公式;
(2)若bn=3n﹣1 , 求數(shù)列{an}的前n項(xiàng)和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,O為坐標(biāo)原點(diǎn),橢圓C1:
+
=1(a>b>0)的左、右焦點(diǎn)分別為F1 , F2 , 離心率為e1;雙曲線C2:
﹣
=1的左、右焦點(diǎn)分別為F3 , F4 , 離心率為e2 , 已知e1e2=
,且|F2F4|=
﹣1. ![]()
(1)求C1、C2的方程;
(2)過(guò)F1作C1的不垂直于y軸的弦AB,M為AB的中點(diǎn),當(dāng)直線OM與C2交于P,Q兩點(diǎn)時(shí),求四邊形APBQ面積的最小值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com