已知函數(shù)
的導(dǎo)函數(shù)是
,
在
處取得極值,且
.
(Ⅰ)求
的極大值和極小值;
(Ⅱ)記
在閉區(qū)間
上的最大值為
,若對(duì)任意的![]()
總有
成立,求
的取值范圍;
(Ⅲ)設(shè)
是曲線
上的任意一點(diǎn).當(dāng)
時(shí),求直線OM斜率的最小值,據(jù)此判斷
與
的大小關(guān)系,并說(shuō)明理由.
(Ⅰ)極大值為
,極小值為
;(Ⅱ)
;(Ⅲ)直線
斜率的最小值為4,
.
【解析】
試題分析:(Ⅰ)根據(jù)題意,先求m值,設(shè)原函數(shù)解析式,由
,得原函數(shù)解析式,再求導(dǎo)函數(shù),列表求極值;(Ⅱ)由(Ⅰ)知函數(shù)在各個(gè)區(qū)間上的單調(diào)性,對(duì)
分情況討論,分
和
兩種情況,分別找出這兩種情況下函數(shù)的最大值,使得
成立,從而求出
的取值范圍;(Ⅲ)當(dāng)
時(shí),求直線OM斜率表達(dá)式
,得斜率最小值為4,據(jù)此判斷
,
,再利用導(dǎo)數(shù)的證明當(dāng)
時(shí),函數(shù)
大于0 恒成立.
試題解析:解:(I)依題意,
,解得
,
1分
由已知可設(shè)
,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013092423580723153006/SYS201309242358569734894083_DA.files/image006.png">,所以
,
則
,導(dǎo)函數(shù)
.
3分
列表:
|
|
|
1 |
(1,3) |
3 |
(3,+∞) |
|
|
+ |
0 |
- |
0 |
+ |
|
|
↗ |
極大值4 |
↘ |
極小值0 |
↗ |
由上表可知
在
處取得極大值為
,
在
處取得極小值為
.
5分
(Ⅱ)①當(dāng)
時(shí),由(I)知
在
上遞增,
所以
的最大值
,
6分
由
對(duì)任意的
恒成立,得
,則
,
∵
,∴
,則
,∴
的取值范圍是
. 8分
②當(dāng)
時(shí),因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013092423580723153006/SYS201309242358569734894083_DA.files/image039.png">,所以
的最大值
,
由
對(duì)任意的
恒成立,得
, ∴
,
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013092423580723153006/SYS201309242358569734894083_DA.files/image009.png">,所以
,因此
的取值范圍是
,
綜上①②可知,
的取值范圍是
.
10分
(Ⅲ)當(dāng)
時(shí),直線
斜率
,
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013092423580723153006/SYS201309242358569734894083_DA.files/image046.png">,所以
,則
,
即直線
斜率的最小值為4.
11分
首先,由
,得
.
其次,當(dāng)
時(shí),有
,所以
,
13分
證明如下:記
,則
,
所以
在
遞增,又
,
則
在
恒成立,即
,所以
. 14分
考點(diǎn):1、導(dǎo)數(shù)的運(yùn)算;2、利用導(dǎo)數(shù)求函數(shù)的最值及單調(diào)性;3、導(dǎo)數(shù)與其他函數(shù)的綜合應(yīng)用.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年福建四地六校高三上學(xué)期第二次月考理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)
的導(dǎo)函數(shù)是
,
在
處取得極值,且
.
(Ⅰ)求
的極大值和極小值;
(Ⅱ)記
在閉區(qū)間
上的最大值為
,若對(duì)任意的![]()
總有
成立,求
的取值范圍;
(Ⅲ)設(shè)
是曲線
上的任意一點(diǎn).當(dāng)
時(shí),求直線OM斜率的最小值,據(jù)此判斷
與
的大小關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014屆江蘇省高三年級(jí)第一次調(diào)研考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)
的導(dǎo)函數(shù)
是二次函數(shù),當(dāng)
時(shí),
有極值,且極大值為2,
.
(1)求函數(shù)
的解析式;
(2)
有兩個(gè)零點(diǎn),求實(shí)數(shù)
的取值范圍;
(3)設(shè)函數(shù)
,若存在實(shí)數(shù)
,使得
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年福建省漳州市高考模擬理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)
的導(dǎo)函數(shù)是
,
在
處取得極值,且
,
(Ⅰ)求
的極大值和極小值;
(Ⅱ)記
在閉區(qū)間
上的最大值為
,若對(duì)任意的![]()
總有
成立,求
的取值范圍;
(Ⅲ)設(shè)
是曲線
上的任意一點(diǎn).當(dāng)
時(shí),求直線OM斜率的最
小值,據(jù)此判斷
與
的大小關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年遼寧省高三第一次模擬考試數(shù)學(xué)理卷 題型:填空題
已知函數(shù)
的導(dǎo)函數(shù)是
,設(shè)
是方程
的兩根.若
,
,則|
|的取值范圍為
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年浙江省高三第一次月考理科數(shù)學(xué)卷 題型:填空題
已知函數(shù)
的導(dǎo)函數(shù)是
,
. 設(shè)
是方程
的兩根,則|
|的取值范圍為 .
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com