在平面直角坐標(biāo)系
中,以
為極點,
軸非負(fù)半軸為極軸建立坐標(biāo)系,已知曲線
的極坐標(biāo)方程為
,直線
的參數(shù)方程為:
(
為參數(shù)),兩曲線相交于
兩點.
(1)寫出曲線
的直角坐標(biāo)方程和直線
的普通方程;
(2)若
求
的值.
(1)
;(2)![]()
解析試題分析:(1)因為要將曲線
的極坐標(biāo)方程為
化為直角坐標(biāo)方程,需要根據(jù)三個變化關(guān)系式,
.所以在極坐標(biāo)方程的兩邊同乘一個
,在根據(jù)變化關(guān)系的三個等式即可.
(2)通過判斷點
就在直線上,所以只要聯(lián)立直線的參數(shù)方程與拋物線的普通方程,得到關(guān)于t的等式,利用韋達定理以,及參數(shù)方程所表示的弦長公式即可求出結(jié)論.
試題解析:(1)(曲線C的直角坐標(biāo)方程為
, 直線l的普通方程
.
(2)直線
的參數(shù)方程為
(t為參數(shù)),
代入y2=4x, 得到
,設(shè)M,N對應(yīng)的參數(shù)分別為t1,t2
則![]()
所以|PM|+|PN|=|t1+t2|=![]()
考點:極坐標(biāo)返程.2.參數(shù)方程.3.圓錐曲線中弦長公式.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知直線
的參數(shù)方程為
為參數(shù)),以坐標(biāo)原點為極點,
軸的正半軸為極軸建立極坐標(biāo)系,圓
的極坐標(biāo)方程為
.
(1)求圓
的直角坐標(biāo)方程;
(2)若
是直線
與圓面
≤
的公共點,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在極坐標(biāo)系中,O為極點,半徑為2的圓C的圓心的極坐標(biāo)為
.
(1)求圓C的極坐標(biāo)方程;
(2)P是圓C上一動點,點Q滿足3
,以極點O為原點,以極軸為x軸正半軸建立直角坐標(biāo)系,求點Q的軌跡的直角坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在極坐標(biāo)系下,已知圓O:ρ=cosθ+sinθ和直線l:ρsin(θ-
)=
.
(1)求圓O和直線l的直角坐標(biāo)方程.
(2)當(dāng)θ∈(0,π)時,求直線l與圓O公共點的一個極坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知曲線C1的參數(shù)方程是
(φ為參數(shù)),以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程是ρ=2.正方形ABCD的頂點都在C2上,且A,B,C,D依逆時針次序排列,點A的極坐標(biāo)為
,
(1)求點A,B,C,D的直角坐標(biāo);
(2)設(shè)P為C1上任意一點,求|PA|2+|PB|2+|PC|2+|PD|2的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓
的極坐標(biāo)方程是
,以極點為平面直角坐標(biāo)系的原點,極軸為
軸的正半軸,建立平面直角坐標(biāo)系,直線
的參數(shù)方程是
(
是參數(shù)).若直線
與圓
相切,求實數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知極坐標(biāo)的極點在平面直角坐標(biāo)系的原點
處,極軸與
軸的正半軸重合,且長度單位相同.直線
的極坐標(biāo)方程為:
,點
,參數(shù)
.
(Ⅰ)求點
軌跡的直角坐標(biāo)方程;(Ⅱ)求點
到直線
距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在極坐標(biāo)系中,已知圓
的圓心
,半徑
.
(Ⅰ)求圓
的極坐標(biāo)方程;
(Ⅱ)若
,直線
的參數(shù)方程為
(
為參數(shù)),直線
交圓
于
兩點,求弦長
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為
(t為參數(shù)),曲線C的參數(shù)方程為
(θ為參數(shù)),試求直線l與曲線C的普通方程,并求出它們的公共點的坐標(biāo).
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com