分析 (1)由∠PAB=∠PAC=90°可知PA⊥平面ABC,故PA⊥BC,又由于BC⊥AB得出BC⊥平面PAB,所以面PBC⊥面PAB;
(2)由M為PB中點可得三棱錐A-PMC的體積為三棱錐P-ABC體積的一半.
解答 證明:(1)∵∠PAB=∠PAC=90°,∴PA⊥AB,PA⊥AC,
又∵AB?平面ABC,AC?平面ABC,AB∩AC=A,
∴PA⊥平面ABC,∵BC?平面ABC,
∴PA⊥BC,
∵∠ABC=90°,∴BC⊥AB,
又∵AB?平面PAB,PA?平面PAB,AB∩PA=A,
∴BC⊥平面PAB,∵BC?平面PBC,
∴面PBC⊥面PAB.
(2)∵M是PB的中點,
∴V棱錐M-ABC=$\frac{1}{2}$V棱錐P-ABC,
∴V棱錐A-PMC=V棱錐P-ABC-V棱錐M-ABC=$\frac{1}{2}$V棱錐P-ABC=$\frac{1}{2}×\frac{1}{3}$×$\frac{1}{2}$×1×2×2=$\frac{1}{3}$.
點評 本題考查了面面垂直的判定定理,棱錐的體積計算,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | $\frac{2}{3}$ | B. | $\frac{4}{3}$ | C. | $\frac{5}{3}$ | D. | $\frac{7}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com