如圖所示,在四棱錐
中,底面
為矩
形,
⊥平面
,
,
為
上的點(diǎn),若
⊥平面![]()
![]()
(1)求證:
為
的中點(diǎn);
(2)求二面角
的大。
(1)由PD⊥平面MAB,
平面MAB,則PD⊥MA,同時(shí)PA=AD,進(jìn)而得到證明。
(2)120°
【解析】
試題分析:解:(1)由PD⊥平面MAB,
平面MAB,則PD⊥MA
2分
又PA=AD,則△APM≌△AMD,因而PM=DM,即M為PD的中點(diǎn); 5分
(2)以A原點(diǎn),以
所在直線分別為x軸、y軸、z軸建立空間直角坐標(biāo)系,
則A(0,0,0),B(1,0,0),C(1,2,0),D(0,2,0),P(0,0,2),M(0,1,1),
由(1)知
=(0,-1,1)為平面MAB的法向量,
7分
設(shè)平面MBC的法向量
=(x,y,z),
=(1,1,-1),
= (0,2,0),![]()
=0,
![]()
=0,即
,令x=z=1,則
=(1,0,1), 10分
,
11分
而二面角A—BM—C為鈍角,因而其大小為120°. 12分
考點(diǎn):二面角的平面角以及線線垂直的運(yùn)用
點(diǎn)評(píng):解決的關(guān)鍵是利用空間向量結(jié)合向量的數(shù)量積來表示角的大小,屬于基礎(chǔ)題。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年北京市海淀區(qū)高三上學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
如圖所示,在四棱錐
中,底面四邊形
是菱形,
,
是邊長(zhǎng)為2的等邊三角形,
,
.
![]()
(Ⅰ)求證:
底面
;
(Ⅱ)求直線
與平面
所成角的大小;
(Ⅲ)在線段
上是否存在一點(diǎn)
,使得
∥平面
?如果存在,求
的值,如果不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年福建省、二中高三上學(xué)期期末聯(lián)考文科數(shù)學(xué)卷(解析版) 題型:解答題
如圖所示,在四棱錐
中,底面ABCD是邊長(zhǎng)為a的正方形,側(cè)面
底面ABCD,且
,若E,F分別為PC,BD的中點(diǎn).
![]()
(1)求證:
平面PAD;
(2)求證:平面PDC
平面PAD;
(3)求四棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省湛江市高三8月第一次月考理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)如圖所示,在四棱錐
中,
平面
,
,
,
,
是
的中點(diǎn).
(1)證明:
平面
;
(2)若
,
,
,求二面角
的正切值.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省高三第二次質(zhì)檢理科數(shù)學(xué) 題型:解答題
如圖所示,在四棱錐
中,底面ABCD是矩形,
,
,
,
, 垂足為
,
(1)求證:
;
(2)求直線
與平面
所成角的余弦值。
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011云南省高一下學(xué)期期末考試數(shù)學(xué) 題型:解答題
本小題滿分12分)如圖所示,在四棱錐
中,
平面
,底面
是直角梯形,
,
。
(1)求證:平面
平面
;
![]()
(2)若
,求二面角
的大小。
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com