【題目】已知橢圓
的離心率為
,橢圓
和拋物線
交于
兩點,且直線
恰好通過橢圓
的右焦點.
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)經(jīng)過橢圓
右焦點的直線
和橢圓
交于
兩點,點
在橢圓上,且
,
其中
為坐標(biāo)原點,求直線
的斜率.
【答案】(1)
;(2)![]()
【解析】試題分析:(1)由
知,可設(shè)
,其中
,把
,代入橢圓方程中解得
,故橢圓方程為![]()
(2)知直線
的斜率不為零,故可設(shè)直線
方程為
,設(shè)
,由已知
,從而
,由于
均在橢圓
上,故有:
,三式結(jié)合化簡得![]()
,把直線
方程為
和橢圓方程聯(lián)立并結(jié)合韋達(dá)定理,即可求得
的值
試題解析:(1)由
知,可設(shè)
,其中![]()
由已知
,代入橢圓中得:
即
,解得![]()
從而
,
故橢圓方程為![]()
(2)設(shè)
,由已知![]()
從而
,由于
均在橢圓
上,故有:
![]()
第三個式子變形為:![]()
將第一,二個式子帶入得:
(*)
分析知直線
的斜率不為零,故可設(shè)直線
方程為
,與橢圓聯(lián)立得:
,由韋達(dá)定理![]()
將(*)變形為:![]()
即![]()
將韋達(dá)定理帶入上式得:
,解得![]()
因為直線的斜率
,故直線
的斜率為![]()
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為響應(yīng)國家“精準(zhǔn)扶貧,產(chǎn)業(yè)扶貧“的戰(zhàn)略,進(jìn)一步優(yōu)化能源消費結(jié)構(gòu),某市決定在一地處山區(qū)的
縣推進(jìn)光伏發(fā)電項目,在該縣山區(qū)居民中隨機(jī)抽取50戶,統(tǒng)計其年用電量得到以下統(tǒng)計表,以樣本的頻率作為概率.
用電量(度) |
|
|
|
|
|
戶數(shù) | 5 | 15 | 10 | 15 | 5 |
(1)在該縣山區(qū)居民中隨機(jī)抽取10戶,記其中年用電量不超過600度的戶數(shù)為
,求
的數(shù)學(xué)期望;
(2)已知該縣某山區(qū)自然村有居民300戶,若計劃在該村安裝總裝機(jī)容量為300千瓦的光伏發(fā)電機(jī)組,該機(jī)組所發(fā)電量除保證該村正常用電外,剩余電量國家電網(wǎng)以
元/度進(jìn)行收購.經(jīng)測算以每千瓦裝機(jī)容量平均發(fā)電1000度,試估計該機(jī)組每年所發(fā)電量除保證正常用電外還能為該村創(chuàng)造直接收益多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱錐
中,
和
是邊長為
的等邊三角形,
,
是
中點,
是
中點.
![]()
(Ⅰ)求證:平面
平面
;
(Ⅱ)求直線
與平面
所成角的正弦值的大。
(Ⅲ)在棱
上是否存在一點
,使得
的余弦值為
?若存在,指出點
在
上的位置;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某單位從一所學(xué)校招收某類特殊人才,對20位已經(jīng)選拔入圍的學(xué)生進(jìn)行運動協(xié)調(diào)能力和邏輯思維能力的測試,其測試結(jié)果如下表:
![]()
例如表中運動協(xié)調(diào)能力良好且邏輯思維能力一般的學(xué)生是4人,由于部分?jǐn)?shù)據(jù)丟失,只知道從這20位參加測試的學(xué)生中隨機(jī)抽取一位,抽到邏輯思維能力優(yōu)秀的學(xué)生的概率為
.
(1)求
、
的值;
(2)從運動協(xié)調(diào)能力為優(yōu)秀的學(xué)生中任意抽取2位,求其中至少有一位邏輯思維能力優(yōu)秀的學(xué)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】交強(qiáng)險是車主必須為機(jī)動車購買的險種,若普通
座以下私家車投保交強(qiáng)險第一年的費用(基準(zhǔn)保費)統(tǒng)一為
元,在下一年續(xù)保時,實行的是費率浮動機(jī)制,保費與上一年度車輛發(fā)生道路交通事故的情況相聯(lián)系,發(fā)生交通事故的次數(shù)越多,費率也就越高,具體浮動情況如下表:
![]()
某機(jī)構(gòu)為了研究某一品牌普通
座以下私家車的投保情況,隨機(jī)抽取了
輛車齡已滿三年的該品牌同型號私家車的下一年續(xù)保時的情況,統(tǒng)計得到了下面的表格:
類型 |
|
|
|
|
|
|
數(shù)量 | 10 | 5 | 5 | 20 | 15 | 5 |
以這
輛該品牌車的投保類型的頻率代替一輛車投保類型的概率,完成下列問題:
(Ⅰ)按照我國《機(jī)動車交通事故責(zé)任強(qiáng)制保險條例》汽車交強(qiáng)險價格的規(guī)定,
,記
為某同學(xué)家里的一輛該品牌車在第四年續(xù)保時的費用,求
的分布列與數(shù)學(xué)期望;(數(shù)學(xué)期望值保留到個位數(shù)字)
(Ⅱ)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強(qiáng)險保費高于基本保費的車輛記為事故車,假設(shè)購進(jìn)一輛事故車虧損
元,一輛非事故車盈利
元:
①若該銷售商購進(jìn)三輛(車齡已滿三年)該品牌二手車,求這三輛車中至少有一輛事故車的概率;
②若該銷售商一次購進(jìn)
輛(車齡已滿三年)該品牌二手車,求他獲得利潤的期望值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線![]()
若
,過點
的直線
交曲線
于
兩點,且
,求直線
的方程;
若曲線
表示圓,且直線
與圓
交于
兩點,是否存在實數(shù)
,使得以
為直徑的圓過原點,若存在,求出實數(shù)
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體
中,△
是等邊三角形,△
是等腰直角三角形,
,平面![]()
平面
,![]()
平面
,點
為
的中點,連接
.
![]()
(1)求證:
∥平面
;
(2)若
,求三棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系
中,圓
的參數(shù)方程
,以
為極點,
軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(Ⅰ)求圓
的極坐標(biāo)方程;
(Ⅱ)直線
的極坐標(biāo)方程是
,射線
與圓
的交點為
,與直線
的交點為
,求線段
的長.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com