【題目】如圖,已知正四棱錐
可繞著
任意旋轉(zhuǎn),
平面
.若
,
,則正四棱錐
在面
內(nèi)的投影面積的取值范圍是_______.
![]()
【答案】![]()
【解析】
由題意可得正四棱錐的側(cè)面與底面所成角為
,側(cè)面上的高為
,設(shè)正四棱錐的底面與平面
所成角為
,當(dāng)
時(shí)投影為矩形,當(dāng)角度為
時(shí),投影面積最大;當(dāng)
時(shí),投影為一個(gè)矩形和一個(gè)三角形;當(dāng)
時(shí),投影面積開始逐漸變大.
![]()
如圖正四棱錐
,
,![]()
設(shè)底面中心為
,取
中點(diǎn)
,連接
和![]()
在
中,
,可得:
,
是側(cè)面與底面的二面角.
在
,
.
側(cè)面與底面的二面角為
.
設(shè)正四棱錐的底面與平面
所成角為![]()
①當(dāng)
時(shí)投影為矩形
投影面積的
②當(dāng)
時(shí),投影為一個(gè)矩形和一個(gè)三角形
(
,
)
![]()
當(dāng)![]()
![]()
![]()
③當(dāng)
時(shí)投影面積開始逐漸變大直到側(cè)面
落到平面
上,此時(shí)面積為
,
綜上所述: ![]()
故答案為: ![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓
的兩個(gè)焦點(diǎn)
,
,設(shè)
,
分別是橢圓
的上、下頂點(diǎn),且四邊形
的面積為
,其內(nèi)切圓周長為
.
(1)求橢圓
的方程;
(2)當(dāng)
時(shí),
,
為橢圓
上的動(dòng)點(diǎn),且
,試問:直線
是否恒過一定點(diǎn)?若是,求出此定點(diǎn)坐標(biāo),若不是,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖四邊形ABCD為菱形,G為AC與BD交點(diǎn),
,
(I)證明:平面
平面
;
(II)若
,
三棱錐
的體積為
,求該三棱錐的側(cè)面積.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
,
.
(1)若曲線
在點(diǎn)
處的切線與
軸平行,求
;
(2)當(dāng)
時(shí),函數(shù)
的圖象恒在
軸上方,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】改革開放以來,我國經(jīng)濟(jì)持續(xù)高速增長
如圖給出了我國2003年至2012年第二產(chǎn)業(yè)增加值與第一產(chǎn)業(yè)增加值的差值
以下簡稱為:產(chǎn)業(yè)差值
的折線圖,記產(chǎn)業(yè)差值為
單位:萬億元
.
求出y關(guān)于年份代碼t的線性回歸方程;
利用
中的回歸方程,分析2003年至2012年我國產(chǎn)業(yè)差值的變化情況,并預(yù)測(cè)我國產(chǎn)業(yè)差值在哪一年約為34萬億元;
結(jié)合折線圖,試求出除去2007年產(chǎn)業(yè)差值后剩余的9年產(chǎn)業(yè)差值的平均值及方差
結(jié)果精確到
.
附:回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為:
,
.
樣本方差公式:
.
參考數(shù)據(jù):
,
,
.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線
的焦點(diǎn)為
,
為拋物線
上異于原點(diǎn)的任意一點(diǎn),過點(diǎn)
的直線
交拋物線
于另一點(diǎn)
,交
軸的正半軸于點(diǎn)
,且有
.當(dāng)點(diǎn)
的橫坐標(biāo)為3時(shí),
為正三角形.
(1)求拋物線
的方程;
(2)若直線
,且
和拋物線
有且只有一個(gè)公共點(diǎn)
,試問直線
是否過定點(diǎn),若過定點(diǎn),求出定點(diǎn)坐標(biāo);若不過定點(diǎn),請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓
,拋物線
,過
上一點(diǎn)
異于原點(diǎn)
作
的切線l交
于A,B兩點(diǎn),切線l交x軸于點(diǎn)Q.
![]()
若點(diǎn)P的橫坐標(biāo)為1,且
,求p的值.
求
的面積的最大值,并求證當(dāng)
面積取最大值時(shí),對(duì)任意的
,直線l均與一個(gè)定橢圓相切.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某老小區(qū)建成時(shí)間較早,沒有集中供暖,隨著人們生活水平的日益提高熱力公司決定在此小區(qū)加裝暖氣該小區(qū)的物業(yè)公司統(tǒng)計(jì)了近五年(截止2018年年底)小區(qū)居民有意向加裝暖氣的戶數(shù),得到如下數(shù)據(jù)
年份編號(hào)x | 1 | 2 | 3 | 4 | 5 |
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
加裝戶數(shù)y | 34 | 95 | 124 | 181 | 216 |
(Ⅰ)若有意向加裝暖氣的戶數(shù)y與年份編號(hào)x滿足線性相關(guān)關(guān)系求y與x的線性回歸方程并預(yù)測(cè)截至2019年年底,該小區(qū)有多少戶居民有意向加裝暖氣;
(Ⅱ)2018年年底鄭州市民生工程決定對(duì)老舊小區(qū)加裝暖氣進(jìn)行補(bǔ)貼,該小區(qū)分到120個(gè)名額物業(yè)公司決定在2019年度采用網(wǎng)絡(luò)競拍的方式分配名額,競拍方案如下:①截至2018年年底已登記在冊(cè)的居民擁有競拍資格;②每戶至多申請(qǐng)一個(gè)名額,由戶主在競拍網(wǎng)站上提出申請(qǐng)并給出每平方米的心理期望報(bào)價(jià);③根據(jù)物價(jià)部門的規(guī)定,每平方米的初裝價(jià)格不得超過300元;④申請(qǐng)階段截止后,將所有申請(qǐng)居民的報(bào)價(jià)自高到低排列,排在前120位的業(yè)主以其報(bào)價(jià)成交;⑤若最后出現(xiàn)并列的報(bào)價(jià),則認(rèn)為申請(qǐng)時(shí)問在前的居民得到名額,為預(yù)測(cè)本次競拍的成交最低價(jià),物業(yè)公司隨機(jī)抽取了有競拍資格的50位居民進(jìn)行調(diào)查統(tǒng)計(jì)了他們的擬報(bào)競價(jià),得到如圖所示的頻率分布直方圖:
![]()
(1)求所抽取的居民中擬報(bào)競價(jià)不低于成本價(jià)180元的人數(shù);
(2)如果所有符合條件的居民均參與競拍,請(qǐng)你利用樣本估計(jì)總體的思想預(yù)測(cè)至少需要報(bào)價(jià)多少元才能獲得名額(結(jié)果取整數(shù))
參考公式對(duì)于一組數(shù)據(jù)(x1,y1),(x2,y2),(x3,y3),…(xn,yn),其回歸直線
的斜率和截距的最小二乘估計(jì)分別為,
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com