如圖甲,設(shè)正方形
的邊長為
,點(diǎn)
分別在
上,并且滿足
,如圖乙,將直角梯形
沿
折到
的位置,使點(diǎn)
在
平面
上的射影
恰好在
上.![]()
(1)證明:
平面
;
(2)求平面
與平面
所成二面角的余弦值.
(1)先證
(2)![]()
解析試題分析:⑴證明:在圖甲中,易知
,從而在圖乙中有
,
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/ed/8/1hr0z4.png" style="vertical-align:middle;" />平面
,
平面
,所以
平面![]()
⑵解法1、
如圖,在圖乙中作
,垂足為
,連接
,
由于
平面
,則
,
所以
平面
,則
,
所以
平面
與平面
所成二面角的平面角,
圖甲中有
,又
,則
三點(diǎn)共線,
設(shè)
的中點(diǎn)為
,則
,易證
,所以,
,
;
又由
,得
,
于是,
,
在
中,
,即所求二面角的余弦值為
.![]()
![]()
解法2、
如圖,在圖乙中作
,垂足為
,連接
,由于
平面
,則
,
所以
平面
,則
,圖甲中有
,又
,則
三點(diǎn)共線,
設(shè)
的中點(diǎn)為
,則
,易證
,所以
,則
;
又由
,得
,
于是,![]()
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四棱錐
的底面是正方形,
,點(diǎn)
在棱
上.![]()
(Ⅰ) 求證:平面
平面
;
(Ⅱ) 當(dāng)
,且
時,確定點(diǎn)
的位置,即求出
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示的幾何體是由以等邊三角形ABC為底面的棱柱被平面DEF所截面得,已知FA⊥平面ABC,AB=2,BD=1,AF=2, CE=3,O為AB的中點(diǎn).![]()
(1)求證:OC⊥DF;
(2)求平面DEF與平面ABC相交所成銳二面角的大;
(3)求多面體ABC—FDE的體積V.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四棱錐PABCD中,底面ABCD為平行四邊形,∠DAB=60°,AB=2AD,PD⊥底面ABCD。
(1)證明:PA⊥BD;(2)設(shè)PD=AD,求二面角A-PB-C的余弦值. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
一個多面體的直觀圖和三視圖如圖所示,其中
,
分別是
,
的中點(diǎn).
(1)求證:
平面
;
(2)在線段
上(含
端點(diǎn))確定一點(diǎn)
,使得
∥平面
,并給出證明.![]()
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,已知在矩形ABCD中,AB=1,BC=a(a>0),PA⊥平面AC,且PA=1.![]()
![]()
(1)試建立適當(dāng)?shù)淖鴺?biāo)系,并寫出點(diǎn)P、B、D的坐標(biāo);
(2)問當(dāng)實(shí)數(shù)a在什么范圍時,BC邊上能存在點(diǎn)Q,使得PQ⊥QD?
(3)當(dāng)BC邊上有且僅有一個點(diǎn)Q使得PQ⊥QD時,求二面角Q-PD-A的大小.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com