【題目】微信運(yùn)動(dòng)和運(yùn)動(dòng)手環(huán)的普及,增強(qiáng)了人民運(yùn)動(dòng)的積極性,每天一萬(wàn)步稱為一種健康時(shí)尚,某中學(xué)在全校范圍內(nèi)內(nèi)積極倡導(dǎo)和督促師生開展“每天一萬(wàn)步”活動(dòng),經(jīng)過(guò)幾個(gè)月的扎實(shí)落地工作后,學(xué)校想了解全校師生每天一萬(wàn)步的情況,學(xué)校界定一人一天走路不足
千步為不健康生活方式,不少于
千步為超健康生活方式者,其他為一般生活方式者,學(xué)校委托數(shù)學(xué)組調(diào)查,數(shù)學(xué)組采用分層抽樣的辦法去估計(jì)全校師生的情況,結(jié)合實(shí)際及便于分層抽樣,認(rèn)定全校教師人數(shù)為
人,高一學(xué)生人數(shù)為
人,高二學(xué)生人數(shù)
人,高三學(xué)生人數(shù)
,從中抽取
人作為調(diào)查對(duì)象,得到了如圖所示的這
人的頻率分布直方圖,這
人中有
人被學(xué)校界定為不健康生活方式者.
(1)求這次作為抽樣調(diào)查對(duì)象的教師人數(shù);
(2)根據(jù)頻率分布直方圖估算全校師生每人一天走路步數(shù)的中位數(shù)(四舍五入精確到整數(shù)步);
(3)校辦公室欲從全校師生中速記抽取
人作為“每天一萬(wàn)步”活動(dòng)的慰問(wèn)對(duì)象,計(jì)劃學(xué)校界定不健康生活方式者鞭策性精神鼓勵(lì)
元,超健康生活方式者表彰獎(jiǎng)勵(lì)
元,一般生活方式者鼓勵(lì)性獎(jiǎng)勵(lì)
元,利用樣本估計(jì)總體,將頻率視為概率,求這次校辦公室慰問(wèn)獎(jiǎng)勵(lì)金額恰好為
元的概率.
![]()
【答案】(1)10(2)
(3)![]()
【解析】試題分析:(1)頻率分布直方圖中小長(zhǎng)方形面積等于對(duì)應(yīng)區(qū)間概率,所以
的頻率為
,再根據(jù)頻數(shù)除以總數(shù)等于頻率得總數(shù),(2)根據(jù)中位數(shù)
對(duì)應(yīng)區(qū)間將概率一分為二得
,解得(3)按
元對(duì)應(yīng)情況分成兩個(gè)互斥事件:3人一般生活方式; 1人一般生活方式1人超健康生活方式1人不健康生活方式;再分別求對(duì)應(yīng)概率,最后利用概率加法求概率.
試題解析:(1)由頻率分布直方圖知
的頻率為
,于是
,
由分層抽樣的原理知這次作為抽樣調(diào)查對(duì)象的教師人數(shù)為
人.
(2)由頻率分布直方圖知
的頻率為
的頻率為
的頻率為
,
設(shè)中位數(shù)為
,則
,于是
(千步);
(3)有頻率分布直方圖知不健康生活方式者概率為
,超健康生活方式者的概率為
,一般生活方式者的概率為
,
因?yàn)?/span>
,
這次校辦公室慰問(wèn)獎(jiǎng)勵(lì)金額恰好為
元的概率為
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在邊長(zhǎng)為3的正三角形中,
,
,
分別為
,
,
上的點(diǎn),且滿足
.將
沿
折起到
的位置,使平面
平面
,連結(jié)
,
,
.(如圖2)
![]()
(Ⅰ)若
為
中點(diǎn),求證:
平面
;
(Ⅱ)求證:
;
(Ⅲ)求
與平面
所成角的正切.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四邊形ABCD是邊長(zhǎng)為1的正方形,PA⊥平面ABCD,N是PC的中點(diǎn).
(Ⅰ)若PA=1,求二面角B﹣PC﹣D的大小;
(Ⅱ)求AN與平面PCD所成角的正弦值的最大值.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某籃球隊(duì)甲、乙兩名運(yùn)動(dòng)員練習(xí)罰球,每人練習(xí)10組,每組罰球40個(gè).命中個(gè)數(shù)的莖葉圖如下.則下面結(jié)論中錯(cuò)誤的一個(gè)是( ) ![]()
A.甲的極差是29
B.乙的眾數(shù)是21
C.甲罰球命中率比乙高
D.甲的中位數(shù)是24
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】等比數(shù)列{an}中,a1=2,a4=16.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若a3 , a5分別為等差數(shù)列{bn}的第4項(xiàng)和第16項(xiàng),試求數(shù)列{bn}的前項(xiàng)和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1)討論函數(shù)
的單調(diào)性;
(2)當(dāng)
時(shí),若函數(shù)
的導(dǎo)函數(shù)
的圖象與
軸交于
,
兩點(diǎn),其橫坐標(biāo)分別為
,
,線段
的中點(diǎn)的橫坐標(biāo)為
,且
,
恰為函數(shù)
的零點(diǎn),求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形
中,
與
相交于點(diǎn)
,
平面
,
.
![]()
(I)求證:
平面
;
(II)當(dāng)直線
與平面
所成的角的余弦值為
時(shí),求證:
;
(III)在(II)的條件下,求異面直線
與
所成的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】正三棱錐P﹣ABC中,CM=2PM,CN=2NB,對(duì)于以下結(jié)論:
①二面角B﹣PA﹣C大小的取值范圍是(
,π);
②若MN⊥AM,則PC與平面PAB所成角的大小為
;
③過(guò)點(diǎn)M與異面直線PA和BC都成
的直線有3條;
④若二面角B﹣PA﹣C大小為
,則過(guò)點(diǎn)N與平面PAC和平面PAB都成
的直線有3條.
正確的序號(hào)是 . ![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com