已知橢圓C:
的離心率為
,右焦點(diǎn)到直線
的距離為
.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線
與橢圓C交于A、B兩點(diǎn),且線段AB中點(diǎn)恰好在直線
上,求△OAB的面積S的最大值.(其中O為坐標(biāo)原點(diǎn)).
(I)
.(II)![]()
解析試題分析:(I)由題意得
,
,所以
,所求橢圓方程為
.
(II)設(shè)
,把直線
代入橢圓方程
得到
,因此
,
,
所以
中點(diǎn)
,又
在直線
上,得
,
, 故
,
,
所以
,原點(diǎn)
到
的距離為
,
得到
,當(dāng)且僅當(dāng)
取到等號(hào),檢驗(yàn)
成立.
考點(diǎn):本題主要考查橢圓的標(biāo)準(zhǔn)方程,直線與橢圓的位置關(guān)系,均值定理的應(yīng)用。
點(diǎn)評(píng):中檔題,求橢圓的標(biāo)準(zhǔn)方程,主要運(yùn)用了橢圓的幾何性質(zhì),注意明確焦點(diǎn)軸和a,b,c的關(guān)系。曲線關(guān)系問(wèn)題,往往通過(guò)聯(lián)立方程組,得到一元二次方程,運(yùn)用韋達(dá)定理。本題(2)利用弦長(zhǎng)公式,確定得到三角形面積表達(dá)式,應(yīng)用均值定理求得最大值。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
橢圓
的離心率為
,兩焦點(diǎn)分別為
,點(diǎn)M是橢圓C上一點(diǎn),
的周長(zhǎng)為16,設(shè)線段MO(O為坐標(biāo)原點(diǎn))與圓
交于點(diǎn)N,且線段MN長(zhǎng)度的最小值為
.
(1)求橢圓C以及圓O的方程;
(2)當(dāng)點(diǎn)
在橢圓C上運(yùn)動(dòng)時(shí),判斷直線
與圓O的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓
的中心在原點(diǎn),焦點(diǎn)在
軸上.若橢圓上的點(diǎn)
到焦點(diǎn)
、
的距離之和等于4.
(1)寫(xiě)出橢圓
的方程和焦點(diǎn)坐標(biāo).
(2)過(guò)點(diǎn)
的直線與橢圓交于兩點(diǎn)
、
,當(dāng)
的面積取得最大值時(shí),求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
平面內(nèi)與兩定點(diǎn)
連線的斜率之積等于非零常數(shù)
的點(diǎn)的軌跡,加上
兩點(diǎn),所成的曲線
可以是圓,橢圓或雙曲線.
(Ⅰ)求曲線
的方程,并討論
的形狀與
值的關(guān)系;
(Ⅱ)當(dāng)
時(shí),對(duì)應(yīng)的曲線為
;對(duì)給定的
,對(duì)應(yīng)的曲線為
,若曲線
的斜率為
的切線與曲線
相交于
兩點(diǎn),且
(
為坐標(biāo)原點(diǎn)),求曲線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
曲線
都是以原點(diǎn)O為對(duì)稱(chēng)中心、坐標(biāo)軸為對(duì)稱(chēng)軸、離心率相等的橢圓.點(diǎn)M的坐標(biāo)是(0,1),線段MN是曲線
的短軸,并且是曲線
的長(zhǎng)軸 . 直線
與曲線
交于A,D兩點(diǎn)(A在D的左側(cè)),與曲線
交于B,C兩點(diǎn)(B在C的左側(cè)).
(1)當(dāng)
=
,
時(shí),求橢圓
的方程;
(2)若
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓
的上頂點(diǎn)為
,左焦點(diǎn)為
,直線
與圓
相切.過(guò)點(diǎn)
的直線與橢圓
交于
兩點(diǎn).
(I)求橢圓
的方程;
(II)當(dāng)
的面積達(dá)到最大時(shí),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓![]()
的離心率為
,以原點(diǎn)為圓心,橢圓的短半軸長(zhǎng)為半徑的圓與直線
相切.
(Ⅰ)求橢圓
的方程;
(Ⅱ)若過(guò)點(diǎn)
的直線與橢圓
相交于兩點(diǎn)
,設(shè)
為橢圓上一點(diǎn),且滿(mǎn)足
(其中
為坐標(biāo)原點(diǎn)),求整數(shù)
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)橢圓
的左、右焦點(diǎn)分別為
,
上頂點(diǎn)為
,在
軸負(fù)半軸上有一點(diǎn)
,滿(mǎn)足
,且
.![]()
(Ⅰ)求橢圓
的離心率;
(Ⅱ)
是過(guò)
三點(diǎn)的圓上的點(diǎn),
到直線
的最大距離等于橢圓長(zhǎng)軸的長(zhǎng),求橢圓
的方程;
(Ⅲ)在(Ⅱ)的條件下,過(guò)右焦點(diǎn)
作斜率為
的直線
與橢圓
交于
兩點(diǎn),線段
的中垂線與
軸相交于點(diǎn)
,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓
的離心率為
,直線
過(guò)點(diǎn)
,
,且與橢圓
相切于點(diǎn)
.(Ⅰ)求橢圓
的方程;(Ⅱ)是否存在過(guò)點(diǎn)
的直線
與橢圓
相交于不同的兩點(diǎn)
、
,使得
?若存在,試求出直線
的方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com