【題目】某市在創(chuàng)建國家級衛(wèi)生城(簡稱“創(chuàng)衛(wèi)”)的過程中,相關(guān)部門需了解市民對“創(chuàng)衛(wèi)”工作的滿意程度,若市民滿意指數(shù)不低于0.8(注:滿意指數(shù)![]()
),“創(chuàng)衛(wèi)”工作按原方案繼續(xù)實(shí)施,否則需進(jìn)一步整改.為此該部門隨機(jī)調(diào)查了100位市民,根據(jù)這100位市民給“創(chuàng)衛(wèi)”工作的滿意程度評分,按以下區(qū)間:
,
,
,
,
,
分為六組,得到如圖頻率分布直方圖:
![]()
(1)為了解部分市民給“創(chuàng)衛(wèi)”工作評分較低的原因,該部門從評分低于60分的市民中隨機(jī)選取2人進(jìn)行座談,求這2人所給的評分恰好都在
的概率;
(2)根據(jù)你所學(xué)的統(tǒng)計知識,判斷該市“創(chuàng)衛(wèi)”工作是否需要進(jìn)一步整改,并說明理由.
【答案】(1)
;(2)該市“創(chuàng)衛(wèi)”工作不需要進(jìn)一步整改
【解析】
(1)由頻率分布直方圖分別求得評分在
和
的市民人數(shù),根據(jù)古典概型可求得結(jié)果;
(2)由頻率分布直方圖估計平均數(shù)的方法計算得到滿意程度平均分,從而求得滿意指數(shù),得到判斷結(jié)果.
(1)由頻率分布直方圖知:評分在
的市民人數(shù)為
人;評分在
的市民人數(shù)為
人
從評分低于
分的市民中選取
人,
人所給評分都在
的概率![]()
(2)由頻率分布直方圖可得滿意程度平均分為:
![]()
滿意指數(shù)![]()
該市“創(chuàng)衛(wèi)”工作不需要進(jìn)一步整改
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣a|+|x+2|.
(1)若a=1.解不等式f(x)≤x2﹣1;
(2)若a>0,b>0,c>0.且f(x)的最小值為4﹣b﹣c.求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為了解中學(xué)生的課外閱讀時間,決定在該中學(xué)的1200名男生和800名女生中按分層抽樣的方法抽取20名學(xué)生,對他們的課外閱讀時間進(jìn)行問卷調(diào)查.現(xiàn)在按課外閱讀時間的情況將學(xué)生分成三類:
類(不參加課外閱讀),
類(參加課外閱讀,但平均每周參加課外閱讀的時間不超過3小時),
類(參加課外閱讀,且平均每周參加課外閱讀的時間超過3小時).調(diào)查結(jié)果如下表:
|
|
| |
男生 |
| 5 | 3 |
女生 |
| 3 | 3 |
(1)求出表中
,
的值;
(2)根據(jù)表中的統(tǒng)計數(shù)據(jù),完成下面的列聯(lián)表,并判斷是否有90%的把握認(rèn)為“參加課外閱讀與否”與性別有關(guān);
男生 | 女生 | 總計 | ||
不參加課外閱讀 | ||||
參加課外閱讀 | ||||
總計 |
P(K≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)討論
的單調(diào)性;
(2)設(shè)
,若函數(shù)
的兩個極值點(diǎn)
恰為函數(shù)
的兩個零點(diǎn),且
的范圍是
,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|2x+1|﹣2|x﹣m|,m∈N,且f(x)<3恒成立.
(1)求m的值;
(2)當(dāng)
,
時,f(a)+f(b)=﹣2,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
,![]()
(1)當(dāng)
為自然對數(shù)的底數(shù)
時,求
的極小值;
(2)討論函數(shù)
零點(diǎn)的個數(shù);
(3)若對任意
,
恒成立,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
,且
與
的圖象有一個斜率為1的公切線(
為自然對數(shù)的底數(shù)).
(1)求
;
(2)設(shè)函數(shù)
,討論函數(shù)
的零點(diǎn)個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】半正多面體(semiregular solid) 亦稱“阿基米德多面體”,是由邊數(shù)不全相同的正多邊形為面的多面體,體現(xiàn)了數(shù)學(xué)的對稱美.二十四等邊體就是一種半正多面體,是由正方體切截而成的,它由八個正三角形和六個正方形為面的半正多面體.如圖所示,圖中網(wǎng)格是邊長為1的正方形,粗線部分是某二十四等邊體的三視圖,則該幾何體的體積為( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系
中,曲線
的參數(shù)方程為
,以坐標(biāo)原點(diǎn)
為極點(diǎn),
軸非負(fù)半軸為極軸建立極坐標(biāo)系,點(diǎn)
為曲線
上的動點(diǎn),點(diǎn)
在線段
的延長線上,且滿足
,點(diǎn)
的軌跡為
.
(1)求曲線
,
的極坐標(biāo)方程;
(2)設(shè)點(diǎn)
的極坐標(biāo)為
,求
面積的最小值。
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com