【題目】在平面直角坐標(biāo)系
中,直線
的傾斜角為
,且經(jīng)過點
.以坐標(biāo)原點O為極點,x軸正半軸為極軸建立極坐標(biāo)系,直線
,從原點O作射線交
于點M,點N為射線OM上的點,滿足
,記點N的軌跡為曲線C.
(Ⅰ)求出直線
的參數(shù)方程和曲線C的直角坐標(biāo)方程;
(Ⅱ)設(shè)直線
與曲線C交于P,Q兩點,求
的值.
【答案】(Ⅰ)
(t為參數(shù)),
;(Ⅱ)3.
【解析】
(Ⅰ)直接由已知寫出直線l1的參數(shù)方程,設(shè)N(ρ,θ),M(ρ1,θ1),(ρ>0,ρ1>0),由題意可得
,即ρ=4cosθ,然后化為普通方程;
(Ⅱ)將l1的參數(shù)方程代入C的直角坐標(biāo)方程中,得到關(guān)于t的一元二次方程,再由參數(shù)t的幾何意義可得|AP||AQ|的值.
(Ⅰ)直線l1的參數(shù)方程為
,(t為參數(shù))
即
(t為參數(shù)).設(shè)N(ρ,θ),M(ρ1,θ1),(ρ>0,ρ1>0),
則
,即
,即ρ=4cosθ,
∴曲線C的直角坐標(biāo)方程為x2-4x+y2=0(x≠0).
(Ⅱ)將l1的參數(shù)方程代入C的直角坐標(biāo)方程中,
得
,
即
,t1,t2為方程的兩個根,
∴t1t2=-3,∴|AP||AQ|=|t1t2|=|-3|=3.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)直線l:y=2x+2,若l與橢圓
的交點為A,B,點P為橢圓上的動點,則使△PAB的面積為
的點P的個數(shù)為( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系中,圓
方程為
,點
,直線
過點
![]()
(1)如圖1,直線的斜率為
,直線
交圓
于
不同兩點,求弦
的長度;
(2)動點
在圓
上作圓周運動,線段
的中點為點
,求點
的軌跡方程;
(3)在(1)中,如圖2,過點
作直線
,交圓
于
不同兩點,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下面命題正確的是( )
A.“
”是“
”的 充 分不 必 要條件
B.命題“若
,則
”的 否 定 是“ 存 在
,則
”.
C.設(shè)
,則“
且
”是“
”的必要而不充分條件
D.設(shè)
,則“
”是“
”的必要 不 充 分 條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
:
的短軸端點為
,
,點
是橢圓
上的動點,且不與
,
重合,點
滿足
,
.
![]()
(Ⅰ)求動點
的軌跡方程;
(Ⅱ)求四邊形
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校共有學(xué)生2000人,其中男生1100人,女生900人為了調(diào)查該校學(xué)生每周平均課外閱讀時間,采用分層抽樣的方法收集該校100名學(xué)生每周平均課外閱讀時間(單位:小時)
(1)應(yīng)抽查男生與女生各多少人?
(2)如圖,根據(jù)收集100人的樣本數(shù)據(jù),得到學(xué)生每周平均課外閱讀時間的頻率分布直方圖,其中樣本數(shù)據(jù)分組區(qū)間為
.若在樣本數(shù)據(jù)中有38名女學(xué)生平均每周課外閱讀時間超過2小時,請完成每周平均課外閱讀時間與性別的列聯(lián)表,并判斷是否有95%的把握認(rèn)為“該校學(xué)生的每周平均課外閱讀時間與性別有關(guān)”.
![]()
男生 | 女生 | 總計 | |
每周平均課外閱讀時間不超過2小時 | |||
每周平均課外閱讀時間超過2小時 | |||
總計 |
附:![]()
| 0.100 | 0.050 | 0.010 | 0.005 |
| 2.706 | 3.841 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系
中,直線
的傾斜角為
,且經(jīng)過點
.以坐標(biāo)原點O為極點,x軸正半軸為極軸建立極坐標(biāo)系,直線
,從原點O作射線交
于點M,點N為射線OM上的點,滿足
,記點N的軌跡為曲線C.
(Ⅰ)求出直線
的參數(shù)方程和曲線C的直角坐標(biāo)方程;
(Ⅱ)設(shè)直線
與曲線C交于P,Q兩點,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
,
.
(1)試判斷函數(shù)
在
上的單調(diào)性,并說明理由;
(2)若
是在區(qū)間
上的單調(diào)函數(shù),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在
中,
,且
.
(1)求角
的大小;
(2)設(shè)數(shù)列
滿足
,前
項和為
,若
,求
的值.
【答案】(1)
;(2)
或
.
【解析】試題分析:
(1)由題意結(jié)合三角形內(nèi)角和為
可得
.由余弦定理可得
,,結(jié)合勾股定理可知
為直角三角形,
,
.
(2)結(jié)合(1)中的結(jié)論可得
.則
,
據(jù)此可得關(guān)于實數(shù)k的方程
,解方程可得
,則
或
.
試題解析:
(1)由已知
,又
,所以
.又由
,
所以
,所以
,
所以
為直角三角形,
,
.
(2)
.
所以
,
由
,得
,所以
,所以
,所以
或
.
【題型】解答題
【結(jié)束】
18
【題目】已知點
是平行四邊形
所在平面外一點,如果
,
,
.(1)求證:
是平面
的法向量;
(2)求平行四邊形
的面積.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com