欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

10.已知雙曲線C與雙曲線$\frac{x^2}{9}-\frac{y^2}{16}=1$有共同的漸近線,且C經(jīng)過點(diǎn)$M(-3,2\sqrt{3})$,則雙曲線C的實(shí)軸長為3.

分析 由雙曲線C與雙曲線$\frac{x^2}{9}-\frac{y^2}{16}=1$有共同的漸近線,設(shè)出方程,把點(diǎn)$M(-3,2\sqrt{3})$,代入求出λ再化簡即可.

解答 解:由題意雙曲線C與雙曲線$\frac{x^2}{9}-\frac{y^2}{16}=1$有共同的漸近線,設(shè)所求的雙曲線的方程為$\frac{{x}^{2}}{9}-\frac{{y}^{2}}{16}=λ$(λ≠0),
因?yàn)榍褻經(jīng)過點(diǎn)$M(-3,2\sqrt{3})$,所以1-$\frac{3}{4}$=λ,即λ=$\frac{1}{4}$,
代入方程化簡得,$\frac{{x}^{2}}{\frac{9}{4}}-\frac{{y}^{2}}{4}=1$,雙曲線C的實(shí)軸長為:3.
故答案為:3.

點(diǎn)評 本題考查雙曲線特有的性質(zhì):漸近線,熟練掌握雙曲線有共同漸近線的方程特點(diǎn)是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知拋物線y2=4x,橢圓$\frac{x^2}{9}+\frac{y^2}=1$,它們有共同的焦點(diǎn)F2,若P是兩曲線的一個(gè)公共點(diǎn),且F1是橢圓的另一個(gè)焦點(diǎn),則△PF1F2的面積為( 。
A.$\sqrt{6}$B.$2\sqrt{6}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在平面直角坐標(biāo)系中,已知橢圓C:$\frac{{x}^{2}}{12}+\frac{{y}^{2}}{6}=1$,設(shè)第一象限內(nèi)的點(diǎn)R(x0,y0)在橢圓C上,從原點(diǎn)O向圓R:(x-x02+(y-y02=4作兩條切線,切點(diǎn)分別為P、Q.
(Ⅰ)當(dāng)OP⊥OQ時(shí),求圓R的方程;
(Ⅱ)是否存在點(diǎn)R,當(dāng)直線OP,OQ斜率k1、k2都存在時(shí),使得k1k2-$\frac{{k}_{1}+{k}_{2}}{{x}_{0}{y}_{0}}$+1=0?若存在,求點(diǎn)R的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,多面體SABCD中面ABCD為矩形,SD⊥AD,且SD⊥AB,AD=a(a>0),AB=2AD,SD=$\sqrt{3}$AD.
(I)求證:面SDB⊥面ABCD.
(Ⅱ)求面SBD與面SAB所成的二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.閱讀如圖所示的程序框圖,運(yùn)行相應(yīng)的程序,若輸入n的值為4,則輸出S的值為( 。
A.20B.40C.77D.546

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.傾斜角為60°的直線l過拋物線y2=4x的焦點(diǎn)F,且與拋物線位于x軸上的部分相交于A,則△OFA的面積為( 。
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{{2\sqrt{3}}}{3}$C.$\sqrt{3}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)$f(x)=\frac{1}{2}{x^2}+mlnx-2x$在定義域內(nèi)是增函數(shù),則實(shí)數(shù)m的取值范圍是( 。
A.m≤1B.m≥1C.m<1D.m>1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知函數(shù)f(x)=xn+f′(1)(n∈N),曲線y=f(x)在點(diǎn)(1,f(1))處的切線與直線x+3y-2=0垂直,則f(-1)=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)函數(shù)f(x)=|x-2|-2|x+1|.
(1)求f(x)的最大值;
(2)若f(x)≤mx+3+m恒成立,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案