【題目】在下列命題中,正確命題的序號(hào)為 (寫出所有正確命題的序號(hào)).
①函數(shù)
的最小值為
;
②已知定義在
上周期為4的函數(shù)
滿足
,則
一定為偶函數(shù);
③定義在
上的函數(shù)
既是奇函數(shù)又是以2為周期的周期函數(shù),則
;
④已知函數(shù)
,則
是
有極值的必要不充分條件;
⑤已知函數(shù)
,若
,則
.
【答案】②③⑤
【解析】
試題對(duì)于①,函數(shù)
中,當(dāng)
時(shí),在
在
為單調(diào)遞增函數(shù),不存在最小值,故①錯(cuò)誤;對(duì)于②,![]()
又
定義在
上周期為
的函數(shù),![]()
為偶函數(shù),故②正確;對(duì)于③,因?yàn)槎x在
上的函數(shù)
是奇函數(shù)又是以
為周期,
,
,
,故③正確;對(duì)于④
要使
有極值,則方程
一定有兩個(gè)不相等的根,
即
當(dāng)
時(shí),
,![]()
,充分性成立,反之不然,
是![]()
有極值的充分不必要條件,故命題④錯(cuò)誤;對(duì)于命題⑤![]()
![]()
為
上的增函數(shù),又![]()
為
上的奇函數(shù),
若
即
時(shí),![]()
故⑤正確,綜上所述,正確的命題序號(hào)為②③⑤,故答案為②③⑤.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)M在橢圓
1(0<b
)上,且位于第一象限,F1,F2為橢圓的兩個(gè)焦點(diǎn),過(guò)F1,F2,M的圓與y軸交于點(diǎn)P,Q(P在Q的上方),|OP||OQ|=1.
![]()
(Ⅰ)求b的值;
(Ⅱ)直線PM與直線x=2交于點(diǎn)N,試問(wèn),在x軸上是否存在定點(diǎn)T,使得![]()
為定值?若存在,求出點(diǎn)T的坐標(biāo)與該定值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
的離心率為
,右焦點(diǎn)為
,直線l經(jīng)過(guò)點(diǎn)F,且與橢圓交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)當(dāng)直線l繞點(diǎn)F轉(zhuǎn)動(dòng)時(shí),試問(wèn):在x軸上是否存在定點(diǎn)M,使得
為常數(shù)?若存在,求出定點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐
中,底面
為直角梯形,
,
,平面
底面
,
為
的中點(diǎn),
是棱
上的點(diǎn),
,
,
.
![]()
(1)求證:平面
平面
;
(2)若
,求二面角
的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)![]()
.
(Ⅰ) 求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ) 當(dāng)
時(shí),求函數(shù)
在
上最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某品牌經(jīng)銷商在一廣場(chǎng)隨機(jī)采訪男性和女性用戶各50名,其中每天玩微信超過(guò)6小時(shí)的用戶列為“微信控”,否則稱其為“非微信控”,調(diào)查結(jié)果如下:
微信控 | 非微信控 | 合計(jì) | |
男性 | 26 | 24 | 50 |
女性 | 30 | 20 | 50 |
合計(jì) | 56 | 44 | 100 |
(1)根據(jù)以上數(shù)據(jù),能否有95%的把握認(rèn)為“微信控”與“性別”有關(guān)?
(2)現(xiàn)從調(diào)查的女性用戶中按分層抽樣的方法選出5人,求所抽取的5人中“微信控”和“非微信控”的人數(shù);
(3)從(2)中抽取的5位女性中,再隨機(jī)抽取3人贈(zèng)送禮品,試求抽取3人中恰有2人位“微信控”的概率.
參考公式:
,其中
.
參考數(shù)據(jù):
| 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
| 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐E-ABCD中,AE⊥DE,CD⊥平面ADE,AB⊥平面ADE,CD=DA=6,AB=2,DE=3.
(I)求棱錐C-ADE的體積;
(II)求證:平面ACE⊥平面CDE;
(III)在線段DE上是否存在一點(diǎn)F,使AF∥平面BCE?若存在,求出
的值;若不存在,說(shuō)明理由.
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com