欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

已知數(shù)列{an}的前n項(xiàng)和為Sn,且a1=3,an=2Sn+1+3n(n∈N*,n≥2).
(1)求證:數(shù)列{
Sn
3n
}是等差數(shù)列;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)令bn=
2n2-5n-3
an
,如果對(duì)任意n∈N*,都有bn+
2
9
t<t2成立,求實(shí)數(shù)t的取值范圍.
考點(diǎn):數(shù)列與不等式的綜合,等差關(guān)系的確定,數(shù)列遞推式
專題:綜合題,等差數(shù)列與等比數(shù)列,不等式的解法及應(yīng)用
分析:(1)再寫一式,兩式相減,即可證明數(shù)列{
Sn
3n
}是等差數(shù)列;
(2)先求出Sn=n•3n,再求數(shù)列{an}的通項(xiàng)公式;
(3)確定對(duì)任意n∈N*,都有bn
1
27
,對(duì)任意n∈N*,都有bn+
2
9
t<t2,轉(zhuǎn)化為
1
27
≤t2-
2
9
t,即可求實(shí)數(shù)t的取值范圍.
解答: 解:(1)∵a1=3,an=2Sn+1+3n(n∈N*,n≥2),
∴當(dāng)n≥2時(shí),an=Sn-Sn-1,∴Sn-3Sn-1=3n,
Sn
3n
-
Sn-1
3n-1
=1,
∴數(shù)列{
Sn
3n
}是以1為首項(xiàng),1為公差的等差數(shù)列;
(2)由(1)得
Sn
3n
=n,
∴Sn=n•3n,
∴n≥2時(shí),an=(2n+1)•3n-1,
n=1時(shí)也成立,
∴an=(2n+1)•3n-1;
(3)bn=
2n2-5n-3
an
=
n-3
3n-1
,
∴bn+1-bn=
-2n+7
2n
,
∴n=1,2,3時(shí),bn+1>bn,n≥4時(shí),bn+1<bn
∴對(duì)任意n∈N*,都有bn
1
27
,
∵對(duì)任意n∈N*,都有bn+
2
9
t<t2,即bn<t2-
2
9
t成立,
1
27
<t2-
2
9
t,
解得t>
1
3
或t<-
1
9
點(diǎn)評(píng):本題考查數(shù)列遞推式,考查數(shù)列的通項(xiàng),考查恒成立問題,考查學(xué)生分析轉(zhuǎn)化問題的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-ax(a∈R).
(1)若不等式f(ax)>a-3的解集為R,求實(shí)數(shù)a的取值范圍;
(2)設(shè)x>y>0,且xy=4,若不等式f(x)+f(y)+2ay≥0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=ex-t(x+1).
(1)若f(x)≥0對(duì)一切正實(shí)數(shù)x恒成立,求t的取值范圍;
(2)設(shè)g(x)=f(x)+
t
ex
,且A(x1,y1)、B(x2,y2)(x1≠x2)是曲線y=g(x)上任意兩點(diǎn),若對(duì)任意的t≤-1,直線AB的斜率恒大于常數(shù)m,求m的取值范圍;
(3)求證:1n+2n+…+(n-1)n≤nn(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

袋子中共有12個(gè)球,其中有5個(gè)黑球,4個(gè)白球,3個(gè)紅球,從中任取2個(gè)球(假設(shè)取到每個(gè)球的可能性都相同).已知每取到一個(gè)黑球得0分,每取到一個(gè)白球得1分,每取到一個(gè)紅球得2分.用ξ表示任取2個(gè)球的得分的差的絕對(duì)值.
(1)求橢機(jī)變量ξ的分布列及ξ的數(shù)學(xué)期望Eξ;
(2)記“不等式ξx2-ξx+
1
2
>0的解集是實(shí)數(shù)集R”為事件A,求事件A發(fā)生的概率P(A).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:x2+y2=1,直線l:y-kx-1=0
(1)k=1時(shí)判斷圓C和直線的位置關(guān)系.
(2)若圓C上有且僅有三個(gè)點(diǎn)到l的距離為
1
2
,求實(shí)數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(sinωx-cosωx,sinωx),
b
=(sinωx+cosωx,
3
cosωx).設(shè)函數(shù)f(x)=
a
b
+λ(x∈R)的圖象關(guān)于直線x=π對(duì)稱,其中ω,λ為常數(shù),且ω∈(
1
2
,1).
(1)求函數(shù)f(x)的最小正周期;
(2)若y=f(x)的圖象經(jīng)過點(diǎn)(
π
5
,0),求函數(shù)f(x)在區(qū)間[0,
π
2
]上的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱柱ABC-A1B1C1中,B1B=B1A=AB=BC,∠B1BC=90°,D為AC的中點(diǎn),AB⊥B1D.
(Ⅰ)求證:平面ABB1A1⊥平面ABC;
(Ⅱ)求直線B1D與平面ACC1A1所成角的正弦值;
(Ⅲ)求二面角B-B1D-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)平面內(nèi),將每個(gè)點(diǎn)繞原點(diǎn)按逆時(shí)針方向旋轉(zhuǎn)45°的變換R所對(duì)應(yīng)的矩陣為M,將每個(gè)點(diǎn)橫、縱坐標(biāo)分別變?yōu)樵瓉淼?span id="ymaqweu" class="MathJye">
2
倍的變換T所對(duì)應(yīng)的矩陣為N.
(Ⅰ)求矩陣M的逆矩陣M-1;
(Ⅱ)求曲線xy=1先在變換R作用下,然后在變換T作用下得到的曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正四棱錐S-ABCD中,AB=2,則當(dāng)該棱錐外接球體積最小時(shí),它的高等于
 

查看答案和解析>>

同步練習(xí)冊(cè)答案