欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

11.藍(lán)軍和紅軍進(jìn)行軍事演練,藍(lán)軍在距離$\sqrt{3}$的軍事基地C和D,測得紅軍的兩支精銳部隊(duì)分別在A處和B處,且∠ADB=30°,∠BDC=30°,∠DCA=60°,∠ACB=45°,如圖所示,則紅軍這兩支精銳部隊(duì)間的距離是( 。
A.$\frac{{\sqrt{6}}}{2}$B.$\sqrt{6}$C.$\frac{3}{4}$D.$\sqrt{3}$

分析 先在△BCD中,求得BC的長,再求得AC的長,最后在△ABC中利用余弦定理,即可求得AB的長,即伊軍這兩支精銳部隊(duì)的距離.

解答 解:在△BCD中,DC=$\sqrt{3}$,∠DBC=180°-30°-60°-45°=45°,∠BDC=30°,
∴$\frac{\sqrt{3}}{sin45°}=\frac{BC}{sin30°}$,∴BC=$\frac{\sqrt{6}}{2}$.
在等邊三角形ACD中,AC=AD=CD=$\sqrt{3}$,
在△ABC中,AC=$\sqrt{3}$,BC=$\frac{\sqrt{6}}{2}$,∠ACB=45°
∴AB=$\sqrt{3+\frac{3}{2}-2×\sqrt{3}×\frac{\sqrt{6}}{2}×\frac{\sqrt{2}}{2}}$=$\frac{\sqrt{6}}{2}$.
故選A.

點(diǎn)評 本題重點(diǎn)考查正弦定理與余弦定理的運(yùn)用,選擇三角形,合理運(yùn)用定理是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.下列函數(shù)中,既是偶函數(shù)又在區(qū)間(0,+∞)上單調(diào)遞增的是( 。
A.$y=\frac{1}{x^2}$B.y=${(\frac{1}{2})}^{|x|}$C.y=lg xD.y=|x|-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.某文藝晚會由樂隊(duì)18人,歌舞隊(duì)12人,曲藝隊(duì)6人組成,需要從這些人中抽取一個容量為n的樣本.如果采用系統(tǒng)抽樣法和分層抽樣法來抽取,都不用剔除個體;如果容量增加一個,則在采用系統(tǒng)抽樣時,需要剔除一個個體,求樣本容量n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知具有線性相關(guān)的兩個變量x,y之間的一組數(shù)據(jù)如表:
x01234
y24.24.54.6m
且回歸方程是y=0.65x+2.7,則m=( 。
A.5.6B.5.3C.5.0D.4.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某地震觀測站對地下水位的變化和發(fā)生地震的情況共進(jìn)行了n=1 700次觀測,列聯(lián)表如下:
Y
X
有震無震合計(jì)
水位有變化1009001 000
水位無變化806207 00
合計(jì)18015201700
問觀測結(jié)果是否說明地下水位的變化與地震的發(fā)生相關(guān)?
P(X2≥x00.150.10.05
x02.0722.7063.841

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若a,b∈R,則復(fù)數(shù)(a2-6a+10)+(-b2+4b-5)i對應(yīng)的點(diǎn)在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知拋物線y2=8x的焦點(diǎn)恰好是橢圓$\frac{{x}^{2}}{{a}^{2}}$+y2=1(a>0)的右焦點(diǎn),則橢圓方程為$\frac{{x}^{2}}{5}+{y}^{2}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.三角形PDC所在的平面與長方形ABCD所在的平面垂直,PD=PC=4,$AB=4\sqrt{2}$,BC=3.點(diǎn)E是CD邊的中點(diǎn),點(diǎn)F、G分別在線段AB、BC上,且AF=2FB,CG=2GB.
(1)證明:BC∥平面PDA;
(2)求二面角P-AD-C的大小;
(3)求直線PA與直線FG所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.如圖所示,正方體ABCD-A′B′C′D′的棱長為1,E,F(xiàn)分別是棱AA′,CC′的中點(diǎn),過直線EF的平面分別與棱BB′,DD′交于M,N,設(shè)BM=x,x∈(0,1),給出以下命題:
①四邊形MENF為平行四邊形;
②若四邊形MENF面積s=f(x),x∈(0,1),則f(x)有最小值;
③若四棱錐A-MENF的體積V=P(x),x∈(0,1),則P(x)為常函數(shù);
④若多面體ABCD-MENF的體積V=h(x),x∈(0,$\frac{1}{2}$),則h(x)為單調(diào)函數(shù);
⑤當(dāng)x=$\frac{1}{2}$時,四邊形MENF為正方形.
其中假命題的個數(shù)為(  )
A.0B.3C.2D.1

查看答案和解析>>

同步練習(xí)冊答案