【題目】已知函數(shù)f(x)=x2+ax+b,實數(shù)x1,x2滿足x1∈(a-1,a),x2∈(a+1,a+2).
(Ⅰ)若a<-
,求證:f(x1)>f(x2);
(Ⅱ)若f(x1)=f(x2)=0,求b-2a的取值范圍.
【答案】(Ⅰ)詳見解析(Ⅱ)-
<b-2a<![]()
【解析】
(Ⅰ)由條件,根據(jù)作差法,分解因式,由不等式的性質(zhì)即可得證;
(Ⅱ)由條件f(x1)=f(x2)=0,x1∈(a-1,a),x2∈(a+1,a+2),結(jié)合二次函數(shù)的圖象可得f(a-1)>0.f(a)<0,f(a+1)<0,f(a+2)>0,化簡整理,結(jié)合b,b-2a的范圍,即可得到所求范圍.
(Ⅰ)證明:因為a<-
,x1<x2,x1+x2<2a+2,
所以f(x2)-f(x1)=(x2-x1)(x1+x2+a)<(x2-x1)(3a+2)<0,
即f(x1)>f(x2);
(Ⅱ)因為f(x1)=f(x2)=0,x1∈(a-1,a),x2∈(a+1,a+2),
所以
,
所以max{-2a2+3a-1,-2a2-6a-4}<b<min{-2a2,-2a2-3a-1}.
由max{-2a2+3a-1,-2a2-6a-4}<min{-2a2,-2a2-3a-1},
解得-
<a<0.
由于max{-2a2+a-1,-2a2-8a-4}<b-2a<min{-2a2-2a,-2a2-5a-1},
而且max{-2a2+a-1,-2a2-8a-4}≥-
,
min{-2a2-2a,-2a2-5a-1}≤
,
所以-
<b-2a<
.
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,曲線C的參數(shù)方程為
(a>0,β為參數(shù)).以O為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為ρcos
=
.
(1)若曲線C與l只有一個公共點,求a的值;
(2)A,B為曲線C上的兩點,且∠AOB=
,求△OAB面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)=ax2﹣a﹣lnx,其中a∈R.
(1)討論f(x)的單調(diào)性;
(2)確定a的所有可能取值,使得f(x)>
﹣e1﹣x在區(qū)間(1,+∞)內(nèi)恒成立(e=2.718…為自然對數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),且在區(qū)間[0,+∞)上單調(diào)遞增,若實數(shù)a滿足f(log2a)+f(
a)≤2f(1),則a的取值范圍是( )
A.![]()
B.[1,2]
C.![]()
D.(0,2]
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】實數(shù)a,b滿足ab>0且a≠b,由a、b、
、
按一定順序構成的數(shù)列( 。
A. 可能是等差數(shù)列,也可能是等比數(shù)列
B. 可能是等差數(shù)列,但不可能是等比數(shù)列
C. 不可能是等差數(shù)列,但可能是等比數(shù)列
D. 不可能是等差數(shù)列,也不可能是等比數(shù)列
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=2x﹣
.
(1)若f(x)=2,求x的值;
(2)若2tf(2t)+mf(t)≥0對于t∈[1,2]恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法中,正確的序號是_________.
①
的圖象與
的圖象關于
軸對稱;
② 若
,則
的值為1;
③ 若
, 則
;
④ 把函數(shù)
的圖象向左平移
個單位長度后,所得圖象的一條對稱軸方程為
;
⑤ 在鈍角
中,
,則
;
⑥
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“輾轉(zhuǎn)相除法”的算法思路如右圖所示.記R(a\b)為a除以b所得的余數(shù)(a,b∈N*),執(zhí)行程序框圖,若輸入a,b分別為243,45,則輸出b的值為( ) ![]()
A.0
B.1
C.9
D.18
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com