分析 根據(jù)棱錐的特征可知PA為外接球的直徑,再利用正四面體的結構特征求出正四面體的高.
解答
解:∵∠PBA=∠PCA=90°,∴PA的中點O為三棱錐P-ABC的外接球球心,
∴三棱錐O-ABC是棱長為2的正四面體,
過O作OM⊥平面ABC,垂足為M,連接BM并延長BM交AC于D,則D為AC的中點,
∴OD=BD=$\sqrt{3}$,MD=$\frac{1}{3}$BD=$\frac{\sqrt{3}}{3}$,
∴OM=$\sqrt{O{D}^{2}-M{D}^{2}}$=$\frac{2\sqrt{6}}{3}$.
故答案為:$\frac{2\sqrt{6}}{3}$.
點評 本題考查了棱錐與外接球的位置關系,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | $\frac{\sqrt{1-{m}^{2}}}{|m|}$ | B. | $\frac{\sqrt{1-{m}^{2}}}{-m}$ | C. | $\frac{\sqrt{1+{m}^{2}}}{m}$ | D. | $\frac{\sqrt{1-{m}^{2}}}{m}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | $\frac{1}{5}$+$\frac{3}{5}$i | B. | -$\frac{1}{5}$-$\frac{3}{5}$i | C. | -$\frac{1}{5}$+$\frac{3}{5}$i | D. | $\frac{1}{5}$-$\frac{3}{5}$i |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | -1 | B. | -2 | C. | -3 | D. | -4 |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com