【題目】將正方形
沿對(duì)角線
折起,當(dāng)以
四點(diǎn)為頂點(diǎn)的三棱錐體積最大時(shí),異面直線
與
所成的角為( )
A.
B.
C.
D. ![]()
【答案】C
【解析】分析:將正方形
沿對(duì)角線
折起,可得當(dāng)三棱錐
體積最大時(shí),
平面
.設(shè)
是
折疊前的位置,連接
,可得
就算直線
與
所成角,算出
的各邊長(zhǎng),得
是等邊三角形,從而求得直線
與
所成角的大小.
詳解:設(shè)
是正方形對(duì)角線
、
的交點(diǎn),將正方形
沿對(duì)角線
折起,
![]()
可得當(dāng)
平面
時(shí),點(diǎn)
到平面
的距離等于
,而當(dāng)
與平面
不垂直時(shí),點(diǎn)
到平面
的距離為
,且
,由此可得當(dāng)三棱錐
體積最大時(shí),
平面
.設(shè)
是
折疊前的位置,連接
,因?yàn)?/span>
,所以
就算直線
與
所成角,設(shè)正方形的邊長(zhǎng)為
,因?yàn)?/span>
平面
,
平面
,所以
,
因?yàn)?/span>
,所以
,
得
是等邊三角形,
,
所以直線
與
所成角為
,故選C.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某鄉(xiāng)鎮(zhèn)政府為了解決農(nóng)村教師的住房問(wèn)題,計(jì)劃征用一塊土地蓋一幢建筑總面積為10000
公寓樓(每層的建筑面積相同).已知士地的征用費(fèi)為
,土地的征用面積為第一層的
倍,經(jīng)工程技術(shù)人員核算,第一層建筑費(fèi)用為
,以后每增高一層,其建筑費(fèi)用就增加
,設(shè)這幢公寓樓高層數(shù)為n,總費(fèi)用為
萬(wàn)元.(總費(fèi)用為建筑費(fèi)用和征地費(fèi)用之和)
(1)若總費(fèi)用不超過(guò)835萬(wàn)元,求這幢公寓樓最高有多少層數(shù)?
(2)試設(shè)計(jì)這幢公寓的樓層數(shù),使總費(fèi)用最少,并求出最少費(fèi)用.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,
.
(1)若
在區(qū)間
上不是單調(diào)函數(shù),求實(shí)數(shù)
的范圍;
(2)若對(duì)任意
,都有
恒成立,求實(shí)數(shù)
的取值范圍;
(3)當(dāng)
時(shí),設(shè)
,對(duì)任意給定的正實(shí)數(shù)
,曲線
上是否存在兩點(diǎn)
,
,使得
是以
(
為坐標(biāo)原點(diǎn))為直角頂點(diǎn)的直角三角形,而且此三角形斜邊中點(diǎn)在
軸上?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線
,過(guò)焦點(diǎn)F的直線l與拋物線分別交于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn),且
.
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)對(duì)于拋物線上任一點(diǎn)Q,點(diǎn)P(2t,0)都滿足|PQ|≥2|t|,求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是邊長(zhǎng)為1的正方形,MD⊥ABCD,NB⊥ABCD.且MD=NB=1.則下列結(jié)論中:
![]()
①MC⊥AN
②DB∥平面AMN
③平面CMN⊥平面AMN
④平面DCM∥平面ABN
所有假命題的個(gè)數(shù)是( )
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A(x1,y1),D(x2,y2)其中(x1<x2)是曲線y2=9x(y≥0).上的兩點(diǎn),A,D兩點(diǎn)在x軸上的射影分別為點(diǎn)B,C且|BC|=3.
(Ⅰ)當(dāng)點(diǎn)B的坐標(biāo)為(1,0)時(shí),求直線AD的方程:
(Ⅱ)記△AOD的面積為S1,梯形ABCD的面積為S2,求
的范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知
,
,其中
是自然常數(shù),
.
(1)當(dāng)
時(shí),求
的極值,并證明
恒成立;
(2)是否存在實(shí)數(shù)
,使
的最小值為
?若存在,求出
的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)直線l:y=2x+2,若l與橢圓
的交點(diǎn)為A,B,點(diǎn)P為橢圓上的動(dòng)點(diǎn),則使△PAB的面積為
的點(diǎn)P的個(gè)數(shù)為( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com