m,n是兩條不同的直線,α、β是兩個不同的平面,給出以下命題:
①若m?α,n∥α,則m∥n;
②若m?α,n?β,α⊥β,α∩β=l,m⊥l,則m⊥n;
③若m⊥α,m⊥n,則n∥α;
④若m⊥α,m⊥β,則α∥β;
⑤若α⊥β,m⊥α,n∥β,則m∥n,
其中正確命題的序號是 .
【答案】分析:①若m?α,n∥α,則m∥n或m與n異面;②由平面垂直于平面的性質定理知m⊥β,故m⊥n;③若m⊥α,m⊥n,則n∥α或n?α;④由平面平行的判定定理知α∥β;⑤若α⊥β,m⊥α,n∥β,則m與n相交、平行或異面.
解答:解:由m,n是兩條不同的直線,α、β是兩個不同的平面,知:
①若m?α,n∥α,則m∥n或m與n異面,故①不正確;
②若m?α,n?β,α⊥β,α∩β=l,m⊥l,
則由平面垂直于平面的性質定理知m⊥β,∴m⊥n,故②正確;
③若m⊥α,m⊥n,則n∥α或n?α,故③不正確;
④若m⊥α,m⊥β,則由平面平行的判定定理知α∥β,故④正確;
⑤若α⊥β,m⊥α,n∥β,則m與n相交、平行或異面,故⑤不正確.
故答案為:②④.
點評:本題考查命題的真假判斷,是基礎題.解題時要認真審題,仔細解答,注意平面的公理及其推論的應用.