【題目】已知函數(shù)f(x)=2lnx+ax﹣
(a∈R)在x=2處的切線經(jīng)過(guò)點(diǎn)(﹣4,ln2)
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若不等式
>mx﹣1恒成立,求實(shí)數(shù)m的取值范圍.
【答案】
(1)解:
,令x=2,∴f'(2)=1+a+f'(2),
∴a=﹣1,設(shè)切點(diǎn)為(2,2ln2+2a﹣2f'(2)),
則y﹣(2ln2+2a﹣2f'(2))=f'(2)(x﹣2),
代入(﹣4,2ln2)得:2ln2﹣2ln2﹣2a+2f'(2)=﹣6f'(2),
∴
,
∴
,
∴f(x)在(0,+∞)單調(diào)遞減
(2)解:
恒成立
,
令
,
∴φ(x)在(0,+∞)單調(diào)遞減,
∵φ(1)=0,
∴
,
∴
在(0,+∞)恒大于0,
∴m≤0.
【解析】(1)求出函數(shù)的導(dǎo)數(shù),求出a的值,得到導(dǎo)函數(shù)的符號(hào),求出函數(shù)的單調(diào)區(qū)間即可;(2)問(wèn)題轉(zhuǎn)化為
,令
,根據(jù)函數(shù)的單調(diào)性求出m的范圍即可.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和函數(shù)的最大(小)值與導(dǎo)數(shù),掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間
內(nèi),(1)如果
,那么函數(shù)
在這個(gè)區(qū)間單調(diào)遞增;(2)如果
,那么函數(shù)
在這個(gè)區(qū)間單調(diào)遞減;求函數(shù)
在
上的最大值與最小值的步驟:(1)求函數(shù)
在
內(nèi)的極值;(2)將函數(shù)
的各極值與端點(diǎn)處的函數(shù)值
,
比較,其中最大的是一個(gè)最大值,最小的是最小值即可以解答此題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分12分)已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且a3=5,S15="225."
(1)求數(shù)列{an}的通項(xiàng)an;
(2)設(shè)bn=
+2n,求數(shù)列{bn}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某城市
戶居民的月平均用電量(單位:度),以
,
,
,
,
,
,
分組的頻率分布直方圖如圖.
![]()
(1)求直方圖中
的值;
(2)求月平均用電量的眾數(shù)和中位數(shù);
(3)在月平均用電量為
,
,
,
的四組用戶中,用分層抽樣的方法抽取
戶居民,則月平均用電量在
的用戶中應(yīng)抽取多少戶?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校研究性學(xué)習(xí)小組從汽車市場(chǎng)上隨機(jī)抽取20輛純電動(dòng)汽車,調(diào)查其續(xù)駛里程(單次充電后能行駛的最大里程),被調(diào)查汽車的續(xù)駛里程全部介于50公里和300公里之間,將統(tǒng)計(jì)結(jié)果分成5組:
,繪制成如圖所示的頻率分布直方圖.
![]()
(1)求直方圖中
的值及續(xù)駛里程在
的車輛數(shù);
(2)若從續(xù)駛里程在
的車輛中隨機(jī)抽取2輛車,求其中恰有一輛車的續(xù)駛里程在
內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某知名品牌汽車深受消費(fèi)者喜愛,但價(jià)格昂貴.某汽車經(jīng)銷商推出A、B、C三種分期付款方式銷售該品牌汽車,并對(duì)近期100位采用上述分期付款的客戶進(jìn)行統(tǒng)計(jì)分析,得到如下的柱狀圖.已知從A、B、C三種分期付款銷售中,該經(jīng)銷商每銷售此品牌汽車1倆所獲得的利潤(rùn)分別是1萬(wàn)元,2萬(wàn)元,3萬(wàn)元.現(xiàn)甲乙兩人從該汽車經(jīng)銷商處,采用上述分期付款方式各購(gòu)買此品牌汽車一輛.以這100位客戶所采用的分期付款方式的頻率代替1位客戶采用相應(yīng)分期付款方式的概率. ![]()
(1)求甲乙兩人采用不同分期付款方式的概率;
(2)記X(單位:萬(wàn)元)為該汽車經(jīng)銷商從甲乙兩人購(gòu)車中所獲得的利潤(rùn),求X的分布列與期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合
,集合
.
當(dāng)
時(shí),求
;
,不等式
恒成立,求實(shí)數(shù)a的取值范圍;
若“
”是“
”的必要條件,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校的平面示意圖為如下圖五邊形區(qū)域ABCDE,其中三角形區(qū)域ABE為生活區(qū),四邊形區(qū)域BCDE為教學(xué)區(qū),AB,BC,CD,DE,EA,BE為學(xué)校的主要道路(不考慮寬度).
,
. ![]()
(1)求道路BE的長(zhǎng)度;
(2)求生活區(qū)△ABE面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,C是以AB為直徑的圓O上異于A,B的點(diǎn),平面PAC⊥平面ABC,PA=PC=AC=2,BC=4,E,F(xiàn) 分別是PC,PB的中點(diǎn),記平面AEF與平面ABC的交線為直線l.
(Ⅰ)求證:直線l⊥平面PAC;
(Ⅱ)直線l上是否存在點(diǎn)Q,使直線PQ分別與平面AEF、直線EF所成的角互余?若存在,求出|AQ|的值;若不存在,請(qǐng)說(shuō)明理由.![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com