欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

5.Rt△ABC的角A,B,C所對的邊分別是a,b,c(其中c為斜邊),分別以a,b,c邊所在的直線為旋轉(zhuǎn)軸,將△ABC旋轉(zhuǎn)一周得到的幾何體的體積分別是V1,V2,V3,則( 。
A.V1+V2=V3B.$\frac{1}{V_1}+\frac{1}{V_2}=\frac{1}{V_3}$
C.$V_1^2+V_2^2=V_3^2$D.$\frac{1}{V_1^2}+\frac{1}{V_2^2}=\frac{1}{V_3^2}$

分析 利用直角三角形的三邊分別為a、b、c,a2+b2=c2,c為斜邊,分別求得V1、V2、V3的值,可得結(jié)論.

解答 解:因為直角三角形的三邊分別為a、b、c,a2+b2=c2,即c為斜邊,
則以邊c所在直線為軸,將三角形旋轉(zhuǎn)一周所得旋轉(zhuǎn)體的體積為V3,則V3 =$\frac{1}{3}$π($\frac{ab}{c}$)2•c=$\frac{1}{3}$πa2•b2•$\frac{1}{c}$,
以邊a所在直線為軸,將三角形旋轉(zhuǎn)一周所得旋轉(zhuǎn)體的體積為V1,則V1=$\frac{1}{3}$πb2•a,
以邊b所在直線為軸,將三角形旋轉(zhuǎn)一周所得旋轉(zhuǎn)體的體積為V2,則V2=$\frac{1}{3}$πa2•b,
∴$\frac{1}{{V}_{1}^{2}}+\frac{1}{{V}_{2}^{2}}=\frac{1}{{V}_{3}^{2}}$,
故選:D.

點評 本題考查幾何體的體積的求法與大小關(guān)系,考查計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.“開門大吉”是某電視臺推出的游戲益智節(jié)目.選手面對1-4號4扇大門,依次按響門上的門鈴,門鈴會播放一段音樂(將一首經(jīng)典流行歌曲以單音色旋律的方式演繹),選手需正確回答出這首歌的名字,方可獲得該扇門對應(yīng)的家庭夢想基金.正確回答每一扇門后,選手可自由選擇帶著獎金離開比賽,還可繼續(xù)挑戰(zhàn)后面的門以獲得更多獎金(獎金金額累加),但是一旦回答錯誤,獎金將清零,選手也會離開比賽.在一次場外調(diào)查中,發(fā)現(xiàn)參加比賽的選手多數(shù)分為兩個年齡段:20~30;30~40(單位:歲),其猜對歌曲名稱與否人數(shù)如圖所示.
(1)寫出2×2列聯(lián)表;判斷是否有90%的把握認(rèn)為猜對歌曲名稱與否與年齡有關(guān)?說明你的理由.(下面的臨界值表供參考)
P(K2≥k00.100.050.0250.0100.0050.001
k02.7063.8415.0246.6357.87910.828
(參考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
(理)(2)若某選手能正確回答第一、二、三、四扇門的概率分別為$\frac{4}{5}$,$\frac{3}{4}$,$\frac{2}{3}$,$\frac{1}{3}$,正確回答一個問題后,選擇繼續(xù)回答下一個問題的概率是$\frac{1}{2}$,且各個問題回答正確與否互不影響.設(shè)該選手所獲夢想基金總數(shù)為ξ,求ξ的分布列及數(shù)學(xué)期望.
第一扇門第二扇門第三扇門第四扇門
1000200030005000
每扇門對應(yīng)的夢想基金:(單位:元)
(文)(2)現(xiàn)計劃在這次場外調(diào)查中按年齡段用分層抽樣的方法選取6名選手,并抽取3名幸運(yùn)選手,求3名幸運(yùn)選手中至少有一人在20~30歲之間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)集合M={0,1,2},N={x|x2-3x+2≤0},則M∩N={1,2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知A={x|y=$\sqrt{x-3}$-$\frac{1}{\sqrt{7-x}}$},B={y|y=-x2+2x+8},C={x∈R|x<a或x>a+1}
(1)求A,(∁RA)∩B;
(2)若A∪C=R,求實數(shù)a的取值范圍.
(3)若A∪C=C,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=ax+b(a>0,a≠1)的圖象過點(0,-2),(2,0)
(1)求a與b的值;
(2)求x∈[-2,4]時,求f(x)的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知圓C的圓心為(3,0),且經(jīng)過點A(4,1),直線l:y=x.
(1)求圓C的方程;
(2)若圓C1與圓C關(guān)于直線l對稱,點B、D分別為圓C、C1上任意一點,求|BD|的最小值;
(3)已知直線l上一點P在第一象限,兩質(zhì)點M、N同時從原點出發(fā),點M以每秒1個單位的速度沿x軸正方向運(yùn)動,點N以每秒$2\sqrt{2}$個單位沿射線OP方向運(yùn)動,設(shè)運(yùn)動時間為t秒.問:當(dāng)t為何值時直線MN與圓C相切?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.雙曲線x2-3y2=9的焦距為(  )
A.4$\sqrt{3}$B.2$\sqrt{3}$C.2$\sqrt{6}$D.$\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知頂點在原點,對稱軸為x軸的拋物線,焦點F在直線2x+3y-4=0上.求拋物線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在△ABC中,a=9,b=3$\sqrt{3}$; A=120°,則sin(π-B)等于( 。
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.-$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

同步練習(xí)冊答案