【題目】某農(nóng)科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:
日 期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
溫差 | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù) | 23 | 25 | 30 | 26 | 16 |
該農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)求選取的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)的概率;
(2)若選取的是12月1日與12月5日的兩組數(shù)據(jù),請根據(jù)12月2日至12月4日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程
;
(3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?
(注:
)
【答案】(1)
;(2)
;(3)可靠的,理由見解析.
【解析】試題分析:(1)求出抽到相鄰兩組數(shù)據(jù)的事件概率,利用對立事件的概率計算抽到不相鄰兩組數(shù)據(jù)的概率值;(2)由表中數(shù)據(jù),利用公式計算回歸直線方程的系數(shù),寫出回歸直線方程,利用方程計算并判斷所得的線性回歸方程是否可靠.
試題解析:(1)設(shè)抽到不相鄰兩組數(shù)據(jù)為事件
,因?yàn)閺牡?組數(shù)據(jù)中選取2組數(shù)據(jù)共有10種情況,每種情況是等可能出現(xiàn)的,其中抽到相鄰兩組數(shù)據(jù)的情況有4種,所以![]()
故選取的2組數(shù)據(jù)恰好是不相鄰的2天數(shù)據(jù)的概率是
,
(2)由數(shù)據(jù),求得![]()
![]()
,由公式得
,
,
所以
關(guān)于
的線性回歸方程這![]()
(3)當(dāng)
時, ![]()
同樣地,當(dāng)
時, ![]()
所以,該研究所得到的線性回歸方程是可靠
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(其中
為常數(shù),
).(Ⅰ)求函數(shù)
的單調(diào)區(qū)間;(Ⅱ)當(dāng)
時,是否存在實(shí)數(shù)
,使得當(dāng)
時,不等式
恒成立?如果存在,求
的取值范圍;如果不存在,請說明理由(其中
是自然對數(shù)的底數(shù),
).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】寫出下列函數(shù)的單調(diào)區(qū)間.
(1)y=|x+1|; (2)y=-x2+ax;
(3)y=|2x-1|; (4)y=-
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某電子元件廠對一批新產(chǎn)品的使用壽命進(jìn)行檢驗(yàn),并且廠家規(guī)定使用壽命在
為合格品,使用壽命超過500小時為優(yōu)質(zhì)品,質(zhì)檢科抽取了一部分產(chǎn)品做樣本,經(jīng)檢測統(tǒng)計后,繪制出了該產(chǎn)品使用壽命的頻率分布直方圖(如圖):
![]()
(1)根據(jù)頻率分布直方圖估計該廠產(chǎn)品為合格品或優(yōu)質(zhì)品的概率,并估計該批產(chǎn)品的平均使用壽命;
(2)從這批產(chǎn)品中,采取隨機(jī)抽樣的方法每次抽取一件產(chǎn)品,抽取4次,若以上述頻率作為概率,記隨機(jī)變量
為抽出的優(yōu)質(zhì)品的個數(shù),列出
的分布列,并求出其數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量a=(x+z,3),b=(2,y-z),且a⊥b.若x,y滿足不等式|x|+|y|≤1,則z的取值范圍是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分,第(1)問 4 分,第(2)問 8 分)
某闖關(guān)游戲規(guī)則是:先后擲兩枚骰子,將此實(shí)驗(yàn)重復(fù)
輪,第
輪的點(diǎn)數(shù)分別記為
,如果點(diǎn)數(shù)滿足
,則認(rèn)為第
輪闖關(guān)成功,否則進(jìn)行下一輪投擲,直到闖關(guān)成功,游戲結(jié)束。
求第一輪闖關(guān)成功的概率;
如果游戲只進(jìn)行到第四輪,第四輪后不論游戲成功與否,都終止游戲,記進(jìn)行的輪數(shù)為隨機(jī)變量
,求
的分布列和數(shù)學(xué)期望。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2017屆廣東省深圳市高三下學(xué)期第一次調(diào)研考試(一模)數(shù)學(xué)(文)】已知函數(shù)
是
的導(dǎo)函數(shù),
為自然對數(shù)的底數(shù).
(1)討論
的單調(diào)性;
(2)當(dāng)
時,證明:
;
(3)當(dāng)
時,判斷函數(shù)
零點(diǎn)的個數(shù),并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某研究小組在電腦上進(jìn)行人工降雨模擬實(shí)驗(yàn),準(zhǔn)備用
、
、
三種人工降雨方式分別對甲、乙、丙三地實(shí)施人工降雨,其試驗(yàn)數(shù)據(jù)統(tǒng)計如表:
方式 | 實(shí)施地點(diǎn) | 大雨 | 中雨 | 小雨 | 模擬實(shí)驗(yàn)總次數(shù) |
| 甲 | 4次 | 6次 | 2次 | 12次 |
| 乙 | 3次 | 6次 | 3次 | 12次 |
| 丙 | 2次 | 2次 | 8次 | 12次 |
假定對甲、乙、丙三地實(shí)施的人工降雨彼此互不影響,請你根據(jù)人工降雨模擬實(shí)驗(yàn)的統(tǒng)計數(shù)據(jù):
(Ⅰ)求甲、乙、丙三地都恰為中雨的概率;
(Ⅱ)考慮到旱情和水土流失,如果甲地恰需中雨即達(dá)到理想狀態(tài),乙地必須是大雨才達(dá)到理想狀態(tài),丙地只能是小雨或中雨即達(dá)到理想狀態(tài),記“甲、乙、丙三地中達(dá)到理想狀態(tài)的個數(shù)”為隨機(jī)變量
,求隨機(jī)變量
的分布列和數(shù)學(xué)期望
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列
的前
項和為
,且滿足
,求數(shù)列
的通項公式.勤于思考的小紅設(shè)計了下面兩種解題思路,請你選擇其中一種并將其補(bǔ)充完整.
思路1:先設(shè)
的值為1,根據(jù)已知條件,計算出
_________,
__________,
_________.
猜想:
_______.
然后用數(shù)學(xué)歸納法證明.證明過程如下:
①當(dāng)
時,________________,猜想成立
②假設(shè)
(
N*)時,猜想成立,即
_______.
那么,當(dāng)
時,由已知
,得
_________.
又
,兩式相減并化簡,得
_____________(用含
的代數(shù)式表示).
所以,當(dāng)
時,猜想也成立.
根據(jù)①和②,可知猜想對任何
N*都成立.
思路2:先設(shè)
的值為1,根據(jù)已知條件,計算出
_____________.
由已知
,寫出
與
的關(guān)系式:
_____________________,
兩式相減,得
與
的遞推關(guān)系式:
____________________.
整理:
____________.
發(fā)現(xiàn):數(shù)列
是首項為________,公比為_______的等比數(shù)列.
得出:數(shù)列
的通項公式
____,進(jìn)而得到
____________.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com