已知中心在原點的橢圓C的一個焦點為F(4,0),長軸端點到較近焦點的距離為1,A(x1,y1),B(x2,y2)(x1≠x2)為橢圓上不同的兩點.
(1)求橢圓C的方程.
(2)若x1+x2=8,在x軸上是否存在一點D,使|
|=|
|?若存在,求出D點的坐標;若不存在,說明理由.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C1的中心在坐標原點,兩個焦點分別為F1(-2,0),F2(2,0),點A(2,3)在橢圓C1上,過點A的直線L與拋物線C2:x2=4y交于B,C兩點,拋物線C2在點B,C處的切線分別為l1,l2,且l1與l2交于點P.
(1)求橢圓C1的方程;
(2)是否存在滿足|PF1|+|PF2|=|AF1|+|AF2|的點P?若存在,指出這樣的點P有幾個(不必求出點P的坐標);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
(
>
>0)的離心率
,連接橢圓的四個頂點得到的菱形的面積為4.
(1)求橢圓的方程;
(2)設(shè)直線
與橢圓相交于不同的兩點
,已知點
的坐標為(
,0),點
(0,
)在線段
的垂直平分線上,且
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
橢圓C:
=1(a>b>0)的左、右焦點分別是F1、F2,離心率為
,過F1且垂直于x軸的直線被橢圓C截得的線段長為1.
(1)求橢圓C的方程;
(2)點P是橢圓C上除長軸端點外的任一點,過點P作斜率為k的直線l,使得l與橢圓C有且只有一個公共點.設(shè)直線PF1,PF2的斜率分別為k1,k2.若k≠0,試證明
+
為定值,并求出這個定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,橢圓C:
+
=1的焦點在x軸上,左右頂點分別為A1,A,上頂點為B,拋物線C1,C2分別以A,B為焦點,其頂點均為坐標原點O,C1與C2相交于直線y=
x上一點P.![]()
(1)求橢圓C及拋物線C1,C2的方程.
(2)若動直線l與直線OP垂直,且與橢圓C交于不同兩點M,N,已知點Q(-
,0),求
·
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
:![]()
的離心率
,原點到過點
,
的直線的距離是
.
(1)求橢圓
的方程;
(2)若橢圓
上一動點![]()
關(guān)于直線
的對稱點為
,求
的取值范圍;
(3)如果直線
交橢圓
于不同的兩點
,
,且
,
都在以
為圓心的圓上,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C的中心在原點,一個焦點為F(0,
),且長軸長與短軸長的比是
∶1.
(1)求橢圓C的方程;
(2)若橢圓C上在第一象限的一點P的橫坐標為1,過點P作傾斜角互補的兩條不同的直線PA,PB分別交橢圓C于另外兩點A,B,求證:直線AB的斜率為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知雙曲線
=1(a>0,b>0)的右焦點為F(c,0).
(1)若雙曲線的一條漸近線方程為y=x且c=2,求雙曲線的方程;
(2)以原點O為圓心,c為半徑作圓,該圓與雙曲線在第一象限的交點為A,過A作圓的切線,斜率為-
,求雙曲線的離心率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(13分)已知圓O:x2+y2=3的半徑等于橢圓E:
=1(a>b>0)的短半軸長,橢圓E的右焦點F在圓O內(nèi),且到直線l:y=x-
的距離為
-
,點M是直線l與圓O的公共點,設(shè)直線l交橢圓E于不同的兩點A(x1,y1),B(x2,y2).![]()
(1)求橢圓E的方程;
(2)求證:|AF|-|BF|=|BM|-|AM|.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com