【題目】在直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.若曲線C的極坐標(biāo)方程為ρcos2θ﹣4sinθ=0,P點(diǎn)的極坐標(biāo)為
,在平面直角坐標(biāo)系中,直線l經(jīng)過點(diǎn)P,斜率為
(Ⅰ)寫出曲線C的直角坐標(biāo)方程和直線l的參數(shù)方程;
(Ⅱ)設(shè)直線l與曲線C相交于A,B兩點(diǎn),求
的值.
【答案】解:(Ⅰ)曲線C的極坐標(biāo)方程為ρcos2θ﹣4sinθ=0,即ρ2cos2θ﹣4ρsinθ=0,直角坐標(biāo)方程為x2+y2﹣4y=0; 直線l經(jīng)過點(diǎn)P(0,3),斜率為
,直線l的參數(shù)方程為
(t為參數(shù));
(Ⅱ)
(t為參數(shù))代入圓的普通方程,整理,得:t2+
t﹣3=0,
設(shè)t1 , t2是方程的兩根,∴t1t2=﹣3,t1+t2=﹣ ![]()
∴
=
=
= ![]()
【解析】(Ⅰ)曲線C的極坐標(biāo)方程為ρcos2θ﹣4sinθ=0,即ρ2cos2θ﹣4ρsinθ=0,即可寫出曲線C的直角坐標(biāo)方程;直線l經(jīng)過點(diǎn)P(0,3),斜率為
,即可寫出直線l的參數(shù)方程;(Ⅱ)
(t為參數(shù))代入圓的普通方程,整理,得:t2+
t﹣3=0,利用參數(shù)的幾何意義,求
的值.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在
中,已知
,
邊上的中線
所在直線方程為
,
的角平分線
所在直線的方程為
。求
(1)求頂點(diǎn)
的坐標(biāo);
(2)求
的面積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題
:
表示雙曲線,命題
:
表示橢圓。
(1)若命題
與命題
都為真命題,則
是
的什么條件?
(請用簡要過程說明是“充分不必要條件”、“必要不充分條件”、“充要條件”和“既不充分也不必要條件”中的哪一個)
(2)若
為假命題,且
為真命題,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
經(jīng)過點(diǎn)
,離心率為
,動點(diǎn)M(2,t)(
).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求以OM為直徑且截直線
所得的弦長為2的圓的方程;
(3)設(shè)F是橢圓的右焦點(diǎn),過點(diǎn)F作OM的垂線與以OM為直徑的圓交于點(diǎn)N,證明線段ON的長為定值,并求出這個定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓C與x軸相切于點(diǎn)T(2,0),與y軸正半軸相交于兩點(diǎn)M,N(點(diǎn)M在點(diǎn)N的下方),且|MN|=3.
(Ⅰ)求圓C的方程;
(Ⅱ)過點(diǎn)M任作一條直線與橢圓
相交于兩點(diǎn)A、B,連接AN、BN,求證:∠ANM=∠BNM.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】到兩互相垂直的異面直線的距離相等的點(diǎn),在過其中一條直線且平行于另一條直線的平面內(nèi)的軌跡是( )
A.直線
B.橢圓
C.拋物線
D.雙曲線
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)有關(guān)于x 的一元二次方程![]()
(1)若
是從0,1,2,3,4五個數(shù)中任取的一個數(shù),
是從0,1,2,3四個數(shù)中任取的一個數(shù),求上述方程有實(shí)數(shù)根的概率;
(2)若
是從區(qū)間
中任取的一個實(shí)數(shù),
是從區(qū)間
中任取的一個實(shí)數(shù),求上述方程有實(shí)數(shù)根的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓
:
(其中
為圓心)上的每一點(diǎn)橫坐標(biāo)不變,縱坐標(biāo)變?yōu)樵瓉淼囊话,得到曲線
.
(1)求曲線
的方程;
(2)若點(diǎn)
為曲線
上一點(diǎn),過點(diǎn)
作曲線
的切線交圓
于不同的兩點(diǎn)
(其中
在
的右側(cè)),已知點(diǎn)
.求四邊形
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)
,
分別為雙曲線
的左、右焦點(diǎn),
為雙曲線的左頂點(diǎn),以
,
為直徑的圓交雙曲線某條漸近線于
,
兩點(diǎn),且滿足
,則該雙曲線的離心率為________.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com