如圖所示,正方形ADEF與梯形ABCD所在的平面互相垂直,
,
∥
,
.![]()
(1)求證:
;
(2)求直線
與平面
所成角的正切值;
(3)在
上找一點(diǎn)
,使得
∥平面ADEF,請(qǐng)確定M點(diǎn)的位置,并給出證明.
(1)見(jiàn)解析;(2)
.(3)M是EC中點(diǎn),BM∥面ADEF.
解析試題分析:(1)由已知:面
面
,
,得到
,
.
取
四邊形
.
由
,得到
,
根據(jù)
證得
.
(2)由(1)可知:![]()
即為CE與面BDE所成的角.
在
中,可得
.
(3)取EC中點(diǎn)M,則BM∥面ADEF,證明思路如下:
連結(jié)MB、MP,由(1)知BP∥AD,得到BP∥面ADEF,在
由三角形中位線定理,可得
∥
,進(jìn)一步可得證.
試題解析:(1)由已知:面
面
,面
面![]()
.
,
,
.
取![]()
.
設(shè)![]()
,
,
,
從而
. 4分
(2)由(1)可知:![]()
即為CE與面BDE所成的角.
中,
,
. 8分
(3)取EC中點(diǎn)M,則BM∥面ADEF,證明如下:
連結(jié)MB、MP,由(1)知BP∥AD,∴BP∥面ADEF,
M、P分別為EC、DC的中點(diǎn),
∥
,∴MP∥面ADEF,∴面BMP∥面ADEF,∴BM∥面ADEF. 12分
考點(diǎn):平行關(guān)系,垂直關(guān)系,線面角的計(jì)算.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在如圖所示的多面體中,四邊形
為正方形,四邊形
是直角梯形,
,
平面
,
.![]()
(1)求證:
平面
;
(2)求平面
與平面
所成的銳二面角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在四棱錐P-ABCD中,四邊形ABCD是矩形,側(cè)面PAD⊥底面ABCD,若點(diǎn)E,F(xiàn)分別是PC,BD的中點(diǎn)。![]()
(1)求證:EF∥平面PAD;
(2)求證:平面PAD⊥平面PCD
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知四棱錐P-ABCD中,PB⊥平面ABCD,底面ABCD是直角梯形,∠ABC=∠BCD=90°,PB=BC=CD=
AB.Q是PC上的一點(diǎn).![]()
⑴求證:平面PAD⊥面PBD;
⑵當(dāng)Q在什么位置時(shí),PA∥平面QBD?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,三棱柱
的底面是邊長(zhǎng)為2的正三角形,且側(cè)棱垂直于底面,側(cè)棱長(zhǎng)是,D是AC的中點(diǎn)。![]()
(1)求證:
平面
;
(2)求二面角
的大;
(3)求直線
與平面
所成的角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,四棱錐P
ABCD中,AB⊥AC,AB⊥PA,AB∥CD,AB=2CD,E,F,G,M,N分別為PB,AB,BC,PD,PC的中點(diǎn)![]()
(1)求證:CE∥平面PAD;
(2)求證:平面EFG⊥平面EMN.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖所示,在正方體ABCDA1B1C1D1中,E、F、G、H分別是BC、CC1、C1D1、A1A的中點(diǎn).求證:
(1)BF∥HD1;
(2)EG∥平面BB1D1D.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com