.(本題滿分12分)
如圖甲,直角梯形
中,
,
,點
、
分別在
,
上,且
,
,
,
,現(xiàn)將梯形
沿
折起,使平面
與平面
垂直(如圖乙).
(Ⅰ)求證:
平面
;
(Ⅱ)當(dāng)
的長為何值時,二面角
的大小為
?
![]()
法一:(Ⅰ)MB//NC,MB
平面DNC,NC
平面DNC,
MB//平面DN C.…………………2分
同理MA//平面DNC,又MA
MB=M, 且MA,MB
平面MA B.
![]()
. (6分)
(Ⅱ)過N作NH
交BC延長線于H,連HN,
平面AMND
平面MNCB,DN
MN,
…………………8分
DN
平面MBCN,從而
,
為二面角D-BC-N的平面角.
=
…………………10分
由MB=4,BC=2,
知
60º,
.
sin60º =
…………………11分
由條件知:
…………………12分
解法二:如圖,以點N為坐標(biāo)原點,以NM,NC,ND所在直線分別作為
軸,
軸和
軸,建立空間直角坐標(biāo)系
易得NC=3,MN=
,
設(shè)
,則
.
![]()
(I)
.
![]()
,
∵
,
∴
與平面
共面,又
,
.
(6分)
(II)設(shè)平面DBC的法向量![]()
,![]()
則
,令
,則
,
∴![]()
.
(8分)
又平面NBC的法向量![]()
.
(9分)
![]()
![]()
…………………11分
即:
又
即
…………………12分
【解析】略
科目:高中數(shù)學(xué) 來源: 題型:
| π | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分12分)已知數(shù)列
是首項為
,公比
的等比數(shù)列,,
設(shè)
,數(shù)列
.
(1)求數(shù)列
的通項公式;(2)求數(shù)列
的前n項和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年上海市金山區(qū)高三上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分12分,第1小題6分,第2小題6分)
已知集合A={x| | x–a | < 2,xÎR
},B={x|
<1,xÎR }.
(1) 求A、B;
(2) 若
,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年安徽省高三10月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分12分)
設(shè)函數(shù)
(
,
為常數(shù)),且方程
有兩個實根為
.
(1)求
的解析式;
(2)證明:曲線
的圖像是一個中心對稱圖形,并求其對稱中心.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年重慶市高三第二次月考文科數(shù)學(xué) 題型:解答題
(本題滿分12分,(Ⅰ)小問4分,(Ⅱ)小問6分,(Ⅲ)小問2分.)
如圖所示,直二面角
中,四邊形
是邊長為
的正方形,
,
為
上的點,且
⊥平面![]()
(Ⅰ)求證:
⊥平面![]()
(Ⅱ)求二面角
的大;
(Ⅲ)求點
到平面
的距離.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com