【題目】已知曲線![]()
(1)求曲線在點(diǎn)
處的切線方程;
(2)求曲線過點(diǎn)
的切線方程
【答案】(1)
;(2)
或
。
【解析】
(1)根據(jù)曲線的解析式求出導(dǎo)函數(shù),把
的橫坐標(biāo)代入導(dǎo)函數(shù)中即可求出切線的斜率,根據(jù)
的坐標(biāo)和求出的斜率寫出切線的方程即可;(2)設(shè)出曲線過點(diǎn)
切線方程的切點(diǎn)坐標(biāo),把切點(diǎn)的橫坐標(biāo)代入到(1)求出的導(dǎo)函數(shù)中即可表示出切線的斜率,根據(jù)切點(diǎn)坐標(biāo)和表示出的斜率,寫出切線的方程,把
的坐標(biāo)代入切線方程即可得到關(guān)于切點(diǎn)橫坐標(biāo)的方程,求出方程的解即可得到切點(diǎn)橫坐標(biāo)的值,分別代入所設(shè)的切線方程即可.
解:(1)∵
,∴在點(diǎn)
處的切線的斜率
,
∴曲線在點(diǎn)
處的切線方程為
,即
.
(2)設(shè)曲線
與過點(diǎn)
的切線相切于點(diǎn)
,
則切線的斜率
,
∴切線方程為
,即
.
∵點(diǎn)
在該切線上,∴
,即
,
∴
,∴
,
∴
,解得
或
.
故所求切線方程為
或
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
.
(1)求
的圖象是由
的圖象如何變換而來?
(2)求
的最小正周期、圖象的對(duì)稱軸方程、最大值及其對(duì)應(yīng)的
的集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某觀測(cè)站
在目標(biāo)
的南偏西
方向,從
出發(fā)有一條南偏東
走向的公路,在
處測(cè)得與
相距
的公路
處有一個(gè)人正沿著此公路向
走去,走
到達(dá)
,此時(shí)測(cè)得
距離為
,若此人必須在
分鐘內(nèi)從
處到達(dá)
處,則此人的最小速度為( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P—ABCD的底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC,E是PC的中點(diǎn).
![]()
(Ⅰ)證明PA//平面BDE;
(Ⅱ)求二面角B—DE—C的平面角的余弦值;
(Ⅲ)在棱PB上是否存在點(diǎn)F,使PB⊥平面DEF?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校為了解本校學(xué)生網(wǎng)課期間課后玩電腦游戲時(shí)長情況,隨機(jī)抽取了100名學(xué)生進(jìn)行調(diào)查.下面是根據(jù)調(diào)查結(jié)果繪制的學(xué)生每天玩電腦游戲的時(shí)長的頻率分布直方圖.
![]()
(1)根據(jù)頻率分布直方圖估計(jì)抽取樣本的平均數(shù)
(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(2)已知樣本中玩電腦游戲時(shí)長在
的學(xué)生中,男生比女生多1人,現(xiàn)從中任選3人進(jìn)行回訪,求選出的3人中恰有兩人是男生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】口袋中有100個(gè)大小相同的紅球、白球、黑球,其中紅球45個(gè),從口袋中摸出一個(gè)球,摸出白球的概率為0.23,則摸出黑球的概率為( )
A.0.45B.0.67
C.0.64D.0.32
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某一部件由四個(gè)電子元件按如圖方式連接而成,元件1或元件2正常工作,且元件3或元件4正常工作,則部件正常工作.設(shè)四個(gè)電子元件的使用壽命(單位:小時(shí))均服從正態(tài)分布
,且各個(gè)元件能否正常工作相互獨(dú)立,那么該部件的使用壽命超過1000小時(shí)的概率為__________.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是函數(shù)
的導(dǎo)函數(shù)
的圖象,給出下列命題:
①-2是函數(shù)
的極值點(diǎn);
②1是函數(shù)
的極值點(diǎn);
③
的圖象在
處切線的斜率小于零;
④函數(shù)
在區(qū)間
上單調(diào)遞增.
則正確命題的序號(hào)是( )
![]()
A. ①③ B. ②④ C. ②③ D. ①④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
⑴當(dāng)
時(shí),求函數(shù)
的極值;
⑵若存在與函數(shù)
,
的圖象都相切的直線,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com