【題目】北京市某年11月1日—20日監(jiān)測(cè)最高最低溫度及差值數(shù)據(jù)如下:
日期 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
最高溫度(℃) | 20 | 16 | 14 | 20 | 20 | 20 | 18 | 15 | 12 | 11 | 12 | 12 | 13 | 9 | 8 | 6 | 13 | 11 | 10 | 14 |
最低溫度(℃) | 5 | 4 | 2 | 4 | 9 | 6 | 9 | 3 | -1 | 0 | 5 | 1 | 4 | -1 | -4 | -2 | -1 | 0 | 1 | 3 |
差值(℃) | 15 | 12 | 12 | 16 | 11 | 14 | 9 | 12 | 13 | 11 | 7 | 11 | 9 | 10 | 12 | 8 | 14 | 11 | 9 | 11 |
(Ⅰ)完成下面的頻率分布表及頻率分布直方圖,并寫(xiě)出頻率分布直方圖中
的值;
![]()
![]()
(Ⅱ)從日溫差大于等于
的這些天中,隨機(jī)選取2天.求這兩天中至少有一天的溫差在區(qū)間
內(nèi)的概率.
【答案】(1)見(jiàn)解析;
.
(2)
.
【解析】
(1)利用題中所給的表格,求出每天的溫差,數(shù)出落在
內(nèi)的頻數(shù),利用公式求得頻率,完成頻率分布表,完善直方圖,利用直方圖中長(zhǎng)方形的面積等于對(duì)應(yīng)的頻率,求得
的值;
(2)先算出溫差大于等于
的天數(shù),再找出溫差在區(qū)間
內(nèi)的天數(shù),列出所有的基本事件,再數(shù)出滿(mǎn)足條件的基本事件數(shù),利用概率公式求得結(jié)果.
(Ⅰ)
![]()
![]()
解得
.
(Ⅱ) 依題意,日溫差在區(qū)間
內(nèi)的有3天,設(shè)為
;
氣溫差在
內(nèi)的有2天,設(shè)為
.
則從日溫差大于等于
的這5天里隨機(jī)抽取2天的基本事件空間為
其包含的基本事件數(shù)
.
設(shè)事件
“兩天中至少有一天的溫差在區(qū)間
內(nèi)”.
,
其包含的基本事件數(shù)
.
則
.
所以這兩天中至少有一天的溫差在區(qū)間
內(nèi)的概率為
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
在
與
時(shí)都取得極值;
(1)求
的值與函數(shù)
的單調(diào)區(qū)間;
(2)若對(duì)
,不等式
恒成立,求
的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1)求函數(shù)
的單調(diào)區(qū)間;
(2)若
恒成立,試確定實(shí)數(shù)
的取值范圍;
(3)證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角梯形ABCP中,CP∥AB,CP⊥CB,
,CP=2,D是CP的中點(diǎn),將△PAD沿AD折起,使得PD⊥面ABCD.
![]()
(1)求證:平面PAD⊥平面PCD;
(2)若E是PC的中點(diǎn),求三棱錐D﹣PEB的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐
中,
,
,
,
,直線
與平面
成
角,
為
的中點(diǎn),
,
.
![]()
(Ⅰ)若
,求證:平面
平面
;
(Ⅱ)若
,求直線
與平面
所成角的正弦值的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在棱長(zhǎng)為1的正方體
中,
為線段
的中點(diǎn),
為線段
上一動(dòng)點(diǎn).
(Ⅰ)求證:
;
(Ⅱ)當(dāng)
時(shí),求三棱錐
的體積;
(Ⅲ)在線段
上是否存在一點(diǎn)
,使得
平面
?說(shuō)明理由.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線
:
與拋物線
:![]()
(1)若直線
與拋物線
相切,求實(shí)數(shù)
的值;
(2)若直線
經(jīng)過(guò)拋物線的焦點(diǎn),且與拋物線相交于
,
兩點(diǎn),當(dāng)拋物線上一動(dòng)點(diǎn)
從
到
運(yùn)動(dòng)時(shí),求
面積的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出以下命題,其中真命題的個(gè)數(shù)是( )
①若“
或
”是假命題,則“
且
”是真命題;
②命題“若
,則
或
”為真命題;
③已知空間任意一點(diǎn)
和不共線的三點(diǎn)
,
,
,若
,則
,
,
,
四點(diǎn)共面;
④直線
與雙曲線
交于
,
兩點(diǎn),若
,則這樣的直線有3條;
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com