分析 由a1=2,b1=1,且$\left\{\begin{array}{l}{{a}_{n}=\frac{3}{4}{a}_{n-1}+\frac{1}{4}_{n-1}+1}\\{_{n}=\frac{1}{4}{a}_{n-1}+\frac{3}{4}_{n-1}+1}\end{array}\right.$,可得an-bn=$\frac{1}{2}({a}_{n-1}-_{n-1})$,于是a5-b5=$(\frac{1}{2})^{4}({a}_{1}-_{1})$,同理可得:a4+b4=(a3+b3)+2=(a1+b1)+6,即可得出.
解答 解:∵a1=2,b1=1,且$\left\{\begin{array}{l}{{a}_{n}=\frac{3}{4}{a}_{n-1}+\frac{1}{4}_{n-1}+1}\\{_{n}=\frac{1}{4}{a}_{n-1}+\frac{3}{4}_{n-1}+1}\end{array}\right.$,
∴an-bn=$\frac{1}{2}({a}_{n-1}-_{n-1})$,
∴a5-b5=$(\frac{1}{2})^{4}({a}_{1}-_{1})$=$\frac{1}{16}$;
同理可得:a4+b4=(a3+b3)+2=(a1+b1)+6=9,
則(a4+b4)(a5-b5)=$\frac{1}{16}$×9=$\frac{9}{16}$.
故答案為:$\frac{9}{16}$.
點評 本題考查了數(shù)列的遞推關(guān)系,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com