分析 取BC的中點D,連接AD,DC1,則四邊形B1DCC1和BDC1B1為平行四邊形,從而可證平面AB1D∥平面A1C1C,即可得到AB1∥平面A1C1C.
解答
證明:取BC的中點D,連接AD,DC1,則CD平行且等于B1C1,BD平行且等于B1C1,
∴四邊形B1DCC1和BDC1B1為平行四邊形,
∴B1D平行且等于CC1,∴C1D平行且等于B1B,
由B1B平行且等于AA1,∴C1D平行且等于A1A,
∴四邊形AA1C1D為平行四邊形,
∴AD∥A1C1
∵B1D∩AD=D,B1D,AD?平面AB1D,
∴平面AB1D∥平面A1C1C,
∵AB1?平面AB1D,
∴AB1∥平面A1C1C.
點評 本題主要考查了直線與平面平行的判定,平面與平面平行的判定,考查了空間想象能力和推理論證能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
| A. | f(1)>e,f(2012)>e2012 | B. | f(1)>e,f(2012)<e2012 | ||
| C. | f(1)<e,f(2012)>e2012 | D. | f(1)<e,f(2012)<e2012 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | (-∞,1) | B. | (-1,$\frac{1}{2}$] | C. | [$\frac{1}{2}$,1) | D. | (1,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com