【題目】如圖,橢圓![]()
(
)的離心率是
,過點
(
,
)的動直線
與橢圓相交于
,
兩點,當直線
平行于
軸時,直線
被橢圓
截得的線段長為
.
![]()
⑴求橢圓
的方程:
⑵已知
為橢圓的左端點,問: 是否存在直線
使得
的面積為
?若不存在,說明理由,若存在,求出直線
的方程.
科目:高中數(shù)學 來源: 題型:
【題目】對于函數(shù)①f(x)=4x+
-5,②f(x)=|log2 x|-(
)x,③f(x)=cos(x+2)-cosx,判斷如下兩個命題的真假:
命題甲:f(x)在區(qū)間(1,2)上是增函數(shù);
命題乙:f(x)在區(qū)間(0,+∞)上恰有兩個零點x1,x2,且x1x2<1.
能使命題甲、乙均為真的函數(shù)的序號是_____________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=
x3+
x2+
x(0<a<1,x∈R).若對于任意的三個實數(shù)x1,x2,x3∈[1,2],都有f(x1)+f(x2)>f(x3)恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖甲,在直角梯形
中,
,
,
,
,
是
的中點,
是
與
的交點,將
沿
折起到
的位置,如圖乙.
![]()
(Ⅰ)證明:
平面
;
(Ⅱ)若平面
平面
,求點
到平面
的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
(
)在
上的最小值為
,當把
的圖象上所有的點向右平移
個單位后,得到函數(shù)
的圖象.
(1)求函數(shù)
的解析式;
(2)在△
中,角
,
,
對應的邊分別是
,
,
,若函數(shù)
在
軸右側(cè)的第一個零點恰為
,
,求△
的面積
的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點.
(1) 證明:PB∥平面AEC
(2) 設二面角D-AE-C為60°,AP=1,AD=
,求三棱錐E-ACD的體積
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
.若
的一個零點附近的函數(shù)值如下所示,請用二分法求出方程
的一個正實數(shù)解的近似值(精確度0.1).
,
,
,
,
,
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知過定點P(-2,1)作直線l分別與x、y軸交于A、B兩點,
(1)求經(jīng)過點P且在兩坐標軸上的截距相等的直線l方程.
(2)求使
面積為4時的直線l方程。
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com