分析 tanB=1,可得:B為銳角,B=$\frac{π}{4}$.由tanC=2,可得C為銳角,由$\frac{sinC}{cosC}$=2,sin2C+cos2C=1,解得sinC,cosC.利用sinA=sin(B+C)=sinBcosC+cosBsinC即可得出.再利用正弦定理可得$\frac{a}{sinA}=\frac{sinB}$,即可得出.
解答 解:解法一:∵tanB=1,∴B為銳角,B=$\frac{π}{4}$.
∵tanC=2,∴C為銳角,由$\frac{sinC}{cosC}$=2,sin2C+cos2C=1,
解得sinC=$\frac{2}{\sqrt{5}}$,cosC=$\frac{1}{\sqrt{5}}$.
∴sinA=sin(B+C)=sinBcosC+cosBsinC
=$\frac{\sqrt{2}}{2}×\frac{1}{\sqrt{5}}$+$\frac{\sqrt{2}}{2}$×$\frac{2}{\sqrt{5}}$
=$\frac{3\sqrt{10}}{10}$.
∴$\frac{a}{sinA}=\frac{sinB}$,
則a=$\frac{bsinA}{sinB}$=$\frac{100×\frac{3\sqrt{10}}{10}}{\frac{\sqrt{2}}{2}}$=60$\sqrt{5}$.
或解法二:tanA=-tan(B+C)=-$\frac{tanB+tanC}{1-tanBtanC}$=-$\frac{1+2}{1-1×2}$=-3,可得sinA,同解法一.
故答案為:60$\sqrt{5}$.
點(diǎn)評 本題考查了正弦定理、和差公式、同角三角函數(shù)基本關(guān)系式,考查了推理能力與計(jì)算能力,屬于中檔題.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | ln2+1 | B. | ln2-1 | C. | ln3+1 | D. | ln3-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 100 | B. | 110 | C. | 115 | D. | 120 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\overrightarrow{PA}$+$\overrightarrow{PB}$=$\overrightarrow{0}$ | B. | $\overrightarrow{PC}$+$\overrightarrow{PA}$=$\overrightarrow{0}$ | C. | $\overrightarrow{PB}$+$\overrightarrow{PC}$=$\overrightarrow{0}$ | D. | $\overrightarrow{PA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$=$\overrightarrow{0}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 102 | B. | 34 | C. | 12 | D. | 46 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com